scholarly journals Antiviral Activity of Vacuolar ATPase Blocker Diphyllin against SARS-CoV-2

2021 ◽  
Vol 9 (3) ◽  
pp. 471
Author(s):  
Michal Stefanik ◽  
Petra Strakova ◽  
Jan Haviernik ◽  
Andrew D. Miller ◽  
Daniel Ruzek ◽  
...  

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a causative agent of the pandemic coronavirus disease 2019 (COVID-19), which has resulted in over two million deaths worldwide to date. Diphyllin and diphyllinosides are known as natural blockers of cellular vacuolar ATPases, and so can act as inhibitors of the pH-dependent fusion of viral envelopes with host cell endosomal membranes. Such pH-dependent fusion is a critical early step during the SARS-CoV-2 replication cycle. Accordingly, the anti-SARS-CoV-2 profiles and cytotoxicities of diphyllin, diphyllinoside cleistanthin B, and two structurally related compounds, helioxanthin 8-1 and helioxanthin 5-4-2, are evaluated here using in vitro cell-based assay systems. Neither helioxanthin exhibits any obvious anti-SARS-CoV-2 effects in vitro. By contrast diphyllin and cleistanthin B do exhibit anti-SARS-CoV-2 effects in Vero cells, with respective 50% effective concentrations (EC50) values of 1.92 and 6.51 µM. Diphyllin displays anti-SARS-CoV-2 effect also in colorectal adenocarcinoma (CaCo-2) cells. Moreover, when diphyllin is added at various times post infection, a significant decrease in viral titer is observed in SARS-CoV-2-infected Vero cells, even at high viral multiplicities of infection. Importantly, neither diphyllin nor cleistanthin B are found cytotoxic to Vero cells in concentrations up to 100 µM. However, the cytotoxic effect of diphyllin is more pronounced in Vero E6 and CaCo-2 cells. Overall, our data demonstrate that diphyllin and diphyllin analogues might be perfected as anti-SARS-CoV-2 agents in future preclinical studies, most especially if nanomedicine approaches may be invoked to optimize functional drug delivery to virus infected cells.

2002 ◽  
Vol 76 (21) ◽  
pp. 10776-10784 ◽  
Author(s):  
Bin Lu ◽  
Chien-Hui Ma ◽  
Robert Brazas ◽  
Hong Jin

ABSTRACT The phosphoprotein (P protein) of respiratory syncytial virus (RSV) is a key component of the viral RNA-dependent RNA polymerase complex. The protein is constitutively phosphorylated at the two clusters of serine residues (116, 117, and 119 [116/117/119] and 232 and 237 [232/237]). To examine the role of phosphorylation of the RSV P protein in virus replication, these five serine residues were altered to eliminate their phosphorylation potential, and the mutant proteins were analyzed for their functions with a minigenome assay. The reporter gene expression was reduced by 20% when all five phosphorylation sites were eliminated. Mutants with knockout mutations at two phosphorylation sites (S232A/S237A [PP2]) and at five phosphorylation sites (S116L/S117R/S119L/S232A/S237A [PP5]) were introduced into the infectious RSV A2 strain. Immunoprecipitation of 33Pi-labeled infected cells showed that P protein phosphorylation was reduced by 80% for rA2-PP2 and 95% for rA2-PP5. The interaction between the nucleocapsid (N) protein and P protein was reduced in rA2-PP2- and rA2-PP5-infected cells by 30 and 60%, respectively. Although the two recombinant viruses replicated well in Vero cells, rA2-PP2 and, to a greater extent, rA2-PP5, replicated poorly in HEp-2 cells. Virus budding from the infected HEp-2 cells was affected by dephosphorylation of P protein, because the majority of rA2-PP5 remained cell associated. In addition, rA2-PP5 was also more attenuated than rA2-PP2 in replication in the respiratory tracts of mice and cotton rats. Thus, our data suggest that although the major phosphorylation sites of RSV P protein are dispensable for virus replication in vitro, phosphorylation of P protein is required for efficient virus replication in vitro and in vivo.


2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Roberta Nardacci ◽  
Francesca Colavita ◽  
Concetta Castilletti ◽  
Daniele Lapa ◽  
Giulia Matusali ◽  
...  

AbstractThe pathogenesis of SARS-CoV-2 remains to be completely understood, and detailed SARS-CoV-2 cellular cytopathic effects requires definition. We performed a comparative ultrastructural study of SARS-CoV-1 and SARS-CoV-2 infection in Vero E6 cells and in lungs from deceased COVID-19 patients. SARS-CoV-2 induces rapid death associated with profound ultrastructural changes in Vero cells. Type II pneumocytes in lung tissue showed prominent altered features with numerous vacuoles and swollen mitochondria with presence of abundant lipid droplets. The accumulation of lipids was the most striking finding we observed in SARS-CoV-2 infected cells, both in vitro and in the lungs of patients, suggesting that lipids can be involved in SARS-CoV-2 pathogenesis. Considering that in most cases, COVID-19 patients show alteration of blood cholesterol and lipoprotein homeostasis, our findings highlight a peculiar important topic that can suggest new approaches for pharmacological treatment to contrast the pathogenicity of SARS-CoV-2.


2000 ◽  
Vol 13 (5) ◽  
pp. 563-567 ◽  
Author(s):  
Toshiro Shigaki ◽  
Madan K. Bhattacharyya

Phosphoinositide-specific phospholipase C (PI-PLC) has been shown to be transiently activated when plant cells were treated with elicitors. We thus investigated the activity of PI-PLC when soybean cells were infected with the bacterial pathogen Pseudomonas syringae pv. glycinea, by measuring cellular cytosolic inositol 1,4,5-trisphosphate (IP3) levels. We observed that IP3 content decreased in both compatible and incompatible interactions. In vitro phosphatase activities were similar in both water control and infected cells with slightly lower IP3 degradation observed for infected cells, indicating that the reduced IP3 content in infected cells most likely results from reduced PI-PLC activity. We hypothesize that reduced IP3 content following infection may lead to suppression of various housekeeping activities of the cells, thus diverting the cellular resources either to the synthesis of defense-related compounds against pathogens, and/or to the growth of pathogens.


2021 ◽  
Vol 50 (10) ◽  
pp. 3035-3043
Author(s):  
Nur Azizah A Rahman ◽  
Fadhilah Moh Djamil ◽  
Vinod RMT Balasubramaniam ◽  
Sharifah Syed Hassan ◽  
Wei Boon Yap

Serology-based dengue assays at times produce inaccurate results especially in the early phase of disease onset. A more precise diagnostic approach detecting dengue infections in the early phase enables better management of the disease. This helps reduce dengue-associated morbidity and mortality. Besides, an early diagnosis of dengue is also very beneficial in a dengue outbreak and in endemic regions. In this light, this study aimed to determine the potential of the dengue virus (DENV) non-structural 1 (NS1) gene as an early detection biomarker. The cytopathic effects (CPE) were monitored and the cell death of DENV serotype-2 (DENV2)-infected Vero cells was evaluated for fourteen consecutive days. Only Lemos and in-house NS1-specific primer pairs showed positive amplifications in the preliminary primer validation. Thus, both of the primer pairs were then used to amplify the NS1 gene from the infected cells. The NS1 gene was detected as early as day-2 post-infection using the in-house primers. There was no amplicon produced using the Lemos primers. This is speculated to be attributable to the relatively lower complementarity of the primer sequences with that of the template and low amount of viral mRNA in the DENV2-infected cells. Conclusively, the DENV NS1 gene is a potential early detection marker, however, the NS1-specific primers should be pre-validated to ensure a reliable dengue diagnosis.


2017 ◽  
Vol 62 (5) ◽  
pp. 227-232 ◽  
Author(s):  
S. V. Generalov ◽  
P. S. Erokhin ◽  
T. Yu. Krasovskaya ◽  
N. A. Osina ◽  
E. G. Abramova ◽  
...  

Characteristics of the effect of attenuated rabies virus strain «Moscow 3253» on morphological parameters of transplantable line Vero cells were studied by atomic force microscopy (AFM). Methods based on phase contrast microscopy and immunofluorescence were used to confirm the specificity of interaction and to identify the infectious activity of the rabies virus. Images of intact Vero cells and Vero cells infected with rabies virus were obtained at different periods of cultivation. The character of changes in the cell dimensions (length, width, height) and the cell membrane roughness depending on the rabies virus cultivation time was determined. During the observation period both increases and decreases in the size of the cells were recorded. The size of the infected cells exceeded that of the intact. An increase in the membrane roughness in cells exposed to rabies occurred during the entire period of observation, since the first hours of the interaction of the virus with the cell, while the intact Vero cells exhibited only minor changes in the membrane surface roughness, which were not dependent on the age of the culture. The dependence of the increase in the cell membrane roughness on the infecting dose of the rabies virus was determined. The obtained results open up the prospect of developing a methodological approach to the quantitative in vitro evaluation of the rabies virus using AFM. Changes in the cell membrane roughness appear to be the most indicative parameter for such evaluation.


1976 ◽  
Vol 4 (3-4) ◽  
pp. 207-211
Author(s):  
SHUN SHINBO ◽  
TAKATOSHI KOBAYAKAWA ◽  
HIROSHI ISHIYAMA ◽  
KAZUSHIGE MASUDA

Viruses ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 36
Author(s):  
Audrien Alves Andrade de Souza ◽  
Lauana Ribas Torres ◽  
Lyana Rodrigues Pinto Lima Capobianco ◽  
Vanessa Salete de Paula ◽  
Cynthia Machado Cascabulho ◽  
...  

Despite the severe morbidity caused by Zika fever, its specific treatment is still a challenge for public health. Several research groups have investigated the drug repurposing of chloroquine. However, the highly toxic side effect induced by chloroquine paves the way for the improvement of this drug for use in Zika fever clinics. Our aim is to evaluate the anti-Zika virus (ZIKV) effect of hybrid compounds derived from chloroquine and sulfadoxine antimalarial drugs. The antiviral activity of hybrid compounds (C-Sd1 to C-Sd7) was assessed in an in-vitro model of human cervical and Vero cell lines infected with a Brazilian (BR) ZIKV strain. First, we evaluated the cytotoxic effect on cultures treated with up to 200 µM of C-Sds and observed CC50 values that ranged from 112.0 ± 1.8 to >200 µM in cervical cells and 43.2 ± 0.4 to 143.0 ± 1.3 µM in Vero cells. Then, the cultures were ZIKV-infected and treated with up to 25 µM of C-Sds for 48 h. The treatment of cervical cells with C-Sds at 12 µM induced a reduction of 79.8% ± 4.2% to 90.7% ± 1.5% of ZIKV–envelope glycoprotein expression in infected cells as compared to 36.8% ± 2.9% of infection in vehicle control. The viral load was also investigated and revealed a reduction of 2- to 3-logs of ZIKV genome copies/mL in culture supernatants compared to 6.7 ± 0.7 × 108 copies/mL in vehicle control. The dose–response curve by plaque-forming reduction (PFR) in cervical cells revealed a potent dose-dependent activity of C-Sds in inhibiting ZIKV replication, with PFR above 50% and 90% at 6 and 12 µM, respectively, while 25 µM inhibited 100% of viral progeny. The treatment of Vero cells at 12 µM led to 100% PFR, confirming the C-Sds activity in another cell type. Regarding effective concentration in cervical cells, the EC50 values ranged from 3.2 ± 0.1 to 5.0 ± 0.2 µM, and the EC90 values ranged from 7.2 ± 0.1 to 11.6 ± 0.1 µM, with selectivity index above 40 for most C-Sds, showing a good therapeutic window. Here, our aim is to investigate the anti-ZIKV activity of new hybrid compounds that show highly potent efficacy as inhibitors of ZIKV in-vitro infection. However, further studies will be needed to investigate whether these new chemical structures can lead to the improvement of chloroquine antiviral activity.


2021 ◽  
Vol 9 (6) ◽  
pp. 1144
Author(s):  
Isabel Marcelino ◽  
Philippe Holzmuller ◽  
Ana Coelho ◽  
Gabriel Mazzucchelli ◽  
Bernard Fernandez ◽  
...  

The Rickettsiales Ehrlichia ruminantium, the causal agent of the fatal tick-borne disease Heartwater, induces severe damage to the vascular endothelium in ruminants. Nevertheless, E. ruminantium-induced pathobiology remains largely unknown. Our work paves the way for understanding this phenomenon by using quantitative proteomic analyses (2D-DIGE-MS/MS, 1DE-nanoLC-MS/MS and biotin-nanoUPLC-MS/MS) of host bovine aorta endothelial cells (BAE) during the in vitro bacterium intracellular replication cycle. We detect 265 bacterial proteins (including virulence factors), at all time-points of the E. ruminantium replication cycle, highlighting a dynamic bacterium–host interaction. We show that E. ruminantium infection modulates the expression of 433 host proteins: 98 being over-expressed, 161 under-expressed, 140 detected only in infected BAE cells and 34 exclusively detected in non-infected cells. Cystoscape integrated data analysis shows that these proteins lead to major changes in host cell immune responses, host cell metabolism and vesicle trafficking, with a clear involvement of inflammation-related proteins in this process. Our findings led to the first model of E. ruminantium infection in host cells in vitro, and we highlight potential biomarkers of E. ruminantium infection in endothelial cells (such as ROCK1, TMEM16K, Albumin and PTPN1), which may be important to further combat Heartwater, namely by developing non-antibiotic-based strategies.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 196
Author(s):  
Sara Artusi ◽  
Emanuela Ruggiero ◽  
Matteo Nadai ◽  
Beatrice Tosoni ◽  
Rosalba Perrone ◽  
...  

The herpes simplex virus 1 (HSV-1) genome is extremely rich in guanine tracts that fold into G-quadruplexes (G4s), nucleic acid secondary structures implicated in key biological functions. Viral G4s were visualized in HSV-1 infected cells, with massive virus cycle-dependent G4-formation peaking during viral DNA replication. Small molecules that specifically interact with G4s have been shown to inhibit HSV-1 DNA replication. We here investigated the antiviral activity of TMPyP4, a porphyrin known to interact with G4s. The analogue TMPyP2, with lower G4 affinity, was used as control. We showed by biophysical analysis that TMPyP4 interacts with HSV-1 G4s, and inhibits polymerase progression in vitro; in infected cells, it displayed good antiviral activity which, however, was independent of inhibition of virus DNA replication or entry. At low TMPyP4 concentration, the virus released by the cells was almost null, while inside the cell virus amounts were at control levels. TEM analysis showed that virus particles were trapped inside cytoplasmatic vesicles, which could not be ascribed to autophagy, as proven by RT-qPCR, western blot, and immunofluorescence analysis. Our data indicate a unique mechanism of action of TMPyP4 against HSV-1, and suggest the unprecedented involvement of currently unknown G4s in viral or antiviral cellular defense pathways.


Sign in / Sign up

Export Citation Format

Share Document