scholarly journals Probiotic Lactobacillus sp. Strains Inhibit Growth, Adhesion, Biofilm Formation, and Gene Expression of Bacterial Vaginosis-Inducing Gardnerella vaginalis

2021 ◽  
Vol 9 (4) ◽  
pp. 728
Author(s):  
Zhixiang Qian ◽  
Hui Zhu ◽  
Dan Zhao ◽  
Ping Yang ◽  
Fei Gao ◽  
...  

Gardnerella vaginalis contributes significantly to bacterial vaginosis, which causes an ecological imbalance in vaginal microbiota and presents with the depletion of Lactobacillus sp. Lactobacillus supplementation was reported to be an approach to treat bacterial vaginosis. We investigated the applicability of three Lactobacillus sp. strains (Lactobacillus delbrueckii DM8909, Lactiplantibacillus plantarum ATCC14917, and Lactiplantibacillus plantarum ZX27) based on their probiotic abilities in vitro. The three candidate Lactobacillus sp. strains for bacterial vaginosis therapy showed distinct properties in auto-aggregation ability, hydrophobicity, adhesion to cervical epithelial cells, and survivability in 0.01% hydrogen peroxide. Lpb. plantarum ZX27 showed a higher yield in producing short-chain fatty acids and lactic acid among the three candidate strains, and all three Lactobacillus sp. strains inhibited the growth and adhesion of G. vaginalis. Furthermore, we discovered that the culture supernatant of Lactobacillus sp. exhibited anti-biofilm activity against G. vaginalis. In particular, the Lpb. plantarum ZX27 supernatant treatment decreased the expression of genes related to virulence factors, adhesion, biofilm formation, metabolism, and antimicrobial resistance in biofilm-forming cells and suspended cells. Moreover, Lactobacillus sp. decreased the upregulated expression of interleukin−8 in HeLa cells induced by G. vaginalis or hydrogen peroxide. These results demonstrate the efficacy of Lactobacillus sp. application for treating bacterial vaginosis by limiting the growth, adhesion, biofilm formation, and virulence properties of G. vaginalis.

2021 ◽  
Vol 8 ◽  
Author(s):  
Katy Vaillancourt ◽  
Michel Frenette ◽  
Marcelo Gottschalk ◽  
Daniel Grenier

Actinobacillus pleuropneumoniae is the causal agent of porcine pleuropneumonia, a highly contagious and often deadly respiratory disease that causes major economic losses in the swine industry worldwide. The aim of the present study was to investigate the hydrogen peroxide (H2O2)-dependent antagonistic activity of Streptococcus pluranimalium 2N12 (pig nasal isolate) against A. pleuropneumoniae. A fluorimetric assay showed that S. pluranimalium produces H2O2 dose- and time-dependently. The production of H2O2 increased in the presence of exogenous lactate, suggesting the involvement of lactate oxidase. All 20 strains of A. pleuropneumoniae tested, belonging to 18 different serovars, were susceptible to H2O2, with minimal inhibitory concentrations and minimal bactericidal concentrations ranging from 0.57 to 2.3 mM. H2O2, as well as a culture supernatant of S. pluranimalium, killed planktonic cells of A. pleuropneumoniae. Treating the culture supernatant with catalase abolished its bactericidal property. H2O2 was also active against a pre-formed biofilm-like structure of A. pleuropneumoniae albeit to a lesser extent. A checkerboard assay was used to show that there were antibacterial synergistic interactions between H2O2 and conventional antibiotics, more particularly ceftiofur. Based on our results and within the limitations of this in vitro study, the production of H2O2 by S. pluranimalium could be regarded as a potential protective mechanism of the upper respiratory tract against H2O2-sensitive pathogens such as A. pleuropneumoniae.


2019 ◽  
Vol 85 (18) ◽  
Author(s):  
Louis P. Cornacchione ◽  
Brian A. Klein ◽  
Margaret J. Duncan ◽  
Linden T. Hu

ABSTRACTDespite a growing interest in using probiotic microorganisms to prevent disease, the mechanisms by which probiotics exert their action require further investigation.Porphyromonas gingivalisis an important pathogen implicated in the development of periodontitis. We isolated several strains ofLactobacillus delbrueckiifrom dairy products and examined their ability to inhibitP. gingivalisgrowthin vitro. We observed strain-specific inhibition ofP. gingivalisgrowthin vitro. Whole-genome sequencing of inhibitory and noninhibitory strains ofL. delbrueckiirevealed significant genetic differences supporting the strain specificity of the interaction. Extracts of theL. delbrueckiiSTYM1 inhibitory strain contain inhibitory activity that is abolished by treatment with heat, proteinase K, catalase, and sodium sulfite. We purified the inhibitory protein(s) fromL. delbrueckiiSTYM1 extracts using ammonium sulfate precipitation, anion-exchange chromatography, and gel filtration chromatography. Pyruvate oxidase was highly enriched in the purified samples. Lastly, we showed that purified, catalytically active, recombinant pyruvate oxidase is sufficient to inhibitP. gingivalisgrowthin vitrowithout the addition of cofactors. Further, using a saturated transposon library, we isolated transposon mutants ofP. gingivalisin thefeoB2(PG_1294) gene that are resistant to killing by inhibitoryL. delbrueckii, consistent with a mechanism of hydrogen peroxide production by pyruvate oxidase. Our results support the current understanding of the importance of strain selection, not simply species selection, in microbial interactions. SpecificL. delbrueckiistrains or their products may be effective in the treatment and prevention ofP. gingivalis-associated periodontal disease.IMPORTANCEP. gingivalisis implicated in the onset and progression of periodontal disease and associated with some systemic diseases. Probiotic bacteria represent an attractive preventative therapy for periodontal disease. However, the efficacy of probiotic bacteria can be variable between studies. Our data support the known importance of selecting particular strains of bacteria for probiotic use, not simply a single species. Specifically, in the context of probiotic intervention of periodontitis, our data suggest that high-level expression of pyruvate oxidase with hydrogen peroxide production inL. delbrueckiicould be an important characteristic for the design of a probiotic supplement or a microbial therapeutic.


Microbiology ◽  
2010 ◽  
Vol 156 (2) ◽  
pp. 392-399 ◽  
Author(s):  
Jennifer L. Patterson ◽  
Annica Stull-Lane ◽  
Philippe H. Girerd ◽  
Kimberly K. Jefferson

Worldwide, bacterial vaginosis (BV) is the most common vaginal disorder in women of childbearing age. BV is characterized by a dramatic shift in the vaginal microflora, involving a relative decrease in lactobacilli, and a proliferation of anaerobes. In most cases of BV, the predominant bacterial species found is Gardnerella vaginalis. However, pure cultures of G. vaginalis do not always result in BV, and asymptomatic women are sometimes colonized with low numbers of G. vaginalis. Thus, there is controversy about whether G. vaginalis is an opportunistic pathogen and the causative agent of many cases of BV, or whether BV is a polymicrobial condition caused by the collective effects of an altered microbial flora. Recent studies of the biofilm-forming potential and cytotoxic activity of G. vaginalis have renewed interest in the virulence potential of this organism. In an effort to tease apart the aetiology of this disorder, we utilized in vitro assays to compare three virulence properties of G. vaginalis relative to other BV-associated anaerobes. We designed a viable assay to analyse bacterial adherence to vaginal epithelial cells, we compared biofilm-producing capacities, and we assessed cytotoxic activity. Of the BV-associated anaerobes tested, only G. vaginalis demonstrated all three virulence properties combined. This study suggests that G. vaginalis is more virulent than other BV-associated anaerobes, and that many of the bacterial species frequently isolated from BV may be relatively avirulent opportunists that colonize the vagina after G. vaginalis has initiated an infection.


10.3823/856 ◽  
2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Mohammad A. Alkafaween ◽  
Hamid A. Nagi Al-Jamal ◽  
Abu Bakar Mohmd Hilmi

Background: The study aims to evaluate the antibacterial activity of Trigona honey against S. pneumonia. Methods: The effect of Trigona honey on S. pneumonia investigated using agar well diffusion, MIC, MBC, biofilm formation and RT-qPCR. Results: Trigona honey samples showed the larger zones of inhibition against S. pneumonia, 22.2±0.4 at 100% concentration. Trigona honey possessed the lowest MIC, MBC, MIC50 and MIC90 against S. pneumoniae, 25%, 30%, 12.5% and 25% (w/v) respectively. Trigona honey permeated established biofilms of S. pneumonia, resulting in significant decreased the cells from the biofilm. RT-qPCR revealed that the expression of genes amiF, ftsY, mvaS, pnpA, argG, mvd1, purN, miaA and pbp2a were upregulated, glcK, marR, prmA and ccpA­­­ were downregulated after exposure to honey. Conclusion: Trigona honey demonstrated the highest antibacterial activity against S. pneumoniae. By limiting study in vitro on Trigona honey, we infer that Trigona honey impacts on S. pneumoniae.


Author(s):  
Joana Castro ◽  
Ângela Lima ◽  
Lúcia G. V. Sousa ◽  
Aliona S. Rosca ◽  
Christina A. Muzny ◽  
...  

Bacterial Vaginosis (BV) involves the presence of a multi-species biofilm adhered to vaginal epithelial cells, but its in-depth study has been limited due to the complexity of the bacterial community, which makes the design of in vitro models challenging. Perhaps the most common experimental technique to quantify biofilms is the crystal violet (CV) staining method. Despite its widespread utilization, the CV method is not without flaws. While biofilm CV quantification within the same strain in different conditions is normally accepted, assessing multi-species biofilms formation by CV staining might provide significant bias. For BV research, determining possible synergism or antagonism between species is a fundamental step for assessing the roles of individual species in BV development. Herein, we provide our perspective on how CV fails to properly quantify an in vitro triple-species biofilm composed of Gardnerella vaginalis, Fannyhessea (Atopobium) vaginae, and Prevotella bivia, three common BV-associated bacteria thought to play key roles in incident BV pathogenesis. We compared the CV method with total colony forming units (CFU) and fluorescence microscopy cell count methods. Not surprisingly, when comparing single-species biofilms, the relationship between biofilm biomass, total number of cells, and total cultivable cells was very different between each tested method, and also varied with the time of incubation. Thus, despite its wide utilization for single-species biofilm quantification, the CV method should not be considered for accurate quantification of multi-species biofilms in BV pathogenesis research.


2021 ◽  
Author(s):  
Aliona S. Rosca ◽  
Joana Castro ◽  
Ângela França ◽  
Mario Vaneechoutte ◽  
Nuno Cerca

Sign in / Sign up

Export Citation Format

Share Document