scholarly journals Encystation of Entamoeba histolytica in Axenic Culture

2021 ◽  
Vol 9 (4) ◽  
pp. 873
Author(s):  
Jordan Wesel ◽  
Jennifer Shuman ◽  
Irem Bastuzel ◽  
Julie Dickerson ◽  
Cheryl Ingram-Smith

Entamoeba histolytica is a parasitic protozoan that causes amoebic dysentery, which affects approximately 90 million people each year worldwide. E. histolytica is transmitted through ingestion of food and water contaminated with the cyst form, which undergoes excystation in the small intestine to the trophozoite form that colonizes the large intestine. The reptile pathogen Entamoeba invadens has served as a model for studying stage conversion between the trophozoite and cyst form due to lack of reproducible encystation of E. histolytica in the laboratory. Although much has been learned about encystation and excystation using E. invadens, the findings do not fully translate to E. histolytica due to the extensive genetic and host differences between these species. Here, we present the first reproducible encystation of E. histolytica in vitro. The cysts produced were viable and displayed the four characteristic hallmarks: round shape, chitinous cell wall, tetranucleation, and detergent resistance. Using flow cytometry analysis, glucose limitation and high cell density were key for encystation, as for E. invadens. Entry into encystation was enhanced by the short-chain fatty acids acetate and propionate, unlike for E. invadens. This new model will now allow the further study of E. histolytica stage conversion, transmission, and treatment.

1970 ◽  
Vol 19 (1) ◽  
pp. 65-66
Author(s):  
SK Sarker ◽  
D Mondal ◽  
MA Siddique

Objective: To evaluate the sensitivity pattern of metronidazole against Entamoeba histolytica. Design: It was an experimental study. Settings: The study was carried out in Parasitology Laboratory, ICDDR,B Dhaka from January 2007 to June 2007. Subjects: Entamoeba histolytica (Strain: MS 27 5030) Main outcome measure: Minimum inhibitory concentration (MIC). Results: In this study MIC of metronidazole was < 0.08 mg/ml. Conclusion: The result suggests that metronidazole is still the standard drug for treatment of amoebiasis Key words: Axenic culture; Entamoeba histolytica; Metronidazole. DOI: 10.3329/jdmc.v19i1.6256 J Dhaka Med Coll. 2010; 19(1) : 65-66.


1978 ◽  
Vol 24 (1) ◽  
pp. 63-65 ◽  
Author(s):  
E. Meerovitch ◽  
E. Ghadirian

The lost pathogenicity of two strains of Entamoeba histolytica, one isolated in 1924 and the other in 1967, grown in axenic culture for the past 5 and 6 years respectively, was restored by supplementing the culture medium with cholesterol through a number of transfers. The number of passages in the cholesterol-supplemented medium, necessary to restore a certain degree of pathogenicity of the two strains in hamsters, was proportional to the total time of in vitro cultivation of the strain, and not just the time of cultivation under axenic conditions. Pathogenicity, once restored, persisted for a long time after cholesterol treatment was stopped.


Author(s):  
Maria A GOMES ◽  
Maria N. MELO ◽  
Gil P.M. PENA ◽  
Edward F. SILVA

Differences in virulence of strains of Entamoeba histolytica have long been detected by various experimental assays, both in vivo and in vitro. Discrepancies in the strains characterization have been arisen when different biological assays are compared. In order to evaluate different parameters of virulence in the strains characterization, five strains of E. histolytica, kept under axenic culture, were characterized in respect to their, capability to induce hamster liver abscess, erythrophagocytosis rate and cytopathic effect upon VERO cells. It was found significant correlation between in vitro biological assays, but not between in vivo and in vitro assays. Good correlation was found between cytopathic effect and the mean number of uptaken erythrocytes, but not with percentage of phagocytic amoebae, showing that great variability can be observed in the same assay, according to the variable chosen. It was not possible to correlate isoenzyme and restriction fragment pattern with virulence indexes since all studied strains presented pathogenic patterns. The discordant results observed in different virulence assays suggests that virulence itself may not the directly assessed. What is in fact assessed are different biological characteristics or functions of the parasite more than virulence itself. These characteristics or functions may be related or not with pathogenic mechanisms occurring in the development of invasive amoebic disease


2021 ◽  
Author(s):  
Conall Sauvey ◽  
Gretchen Ehrenkaufer ◽  
Jonathan Blevitt ◽  
Paul Jackson ◽  
Ruben Abagyan

AbstractEntamoeba histolytica is a disease-causing parasitic amoeba which affects an estimated 50 million people worldwide, particularly in socioeconomically vulnerable populations experiencing water sanitation issues. Infection with E. histolytica is referred to as amoebiasis, and can cause symptoms such as colitis, dysentery, and even death in extreme cases. Drugs exist that are capable of killing this parasite, but they are hampered by downsides such as significant adverse effects at therapeutic concentrations, issues with patient compliance, the need for additional drugs to kill the transmissible cyst stage, and potential development of resistance. Past screens of small and medium sized chemical libraries have yielded anti-amoebic candidates, thus rendering high-throughput screening a promising direction for new drug discovery in this area. In this study, we screened a curated 80,000-compound library from Janssen pharmaceuticals against E. histolytica trophozoites in vitro, and from it identified a highly potent new inhibitor compound. Further experimentation confirmed the activity of this compound, as well as that of several structurally related compounds, originating from both the Janssen Jump-stARter library, and from chemical vendors, thus highlighting a new structure-activity relationship (SAR). In addition, we confirmed that the compound inhibited E. histolytica survival as rapidly as the current standard of care and inhibited transmissible cysts of the related model organism Entamoeba invadens. Together these results constitute the discovery of a novel class of chemicals with favorable in vitro pharmacological properties which may lead to an improved therapy against this parasite and in all of its life stages.Author summaryThe parasite Entamoeba histolytica represents a significant challenge in the field of global health. It currently infects and causes disease among millions of people worldwide, particularly those lacking access to clean water. Drugs exist to treat this disease, but nevertheless it persists as a problem, likely at least partly due to problems and downsides inherent to these drugs. Hence the search for new and better ones is needed. We report here our contribution to this search, consisting of testing a large, carefully-curated collection of tens of thousands of chemicals for their ability to kill E. histolytica. This large-scale test resulted in the identification of one of the compounds as potently anti-amoebic, capable of killing the parasite cells at extremely low concentrations. Further experimentation found several chemically-related compounds to also possess this property, and additionally found the first compound capable of killing the infective life stage of another Entamoeba parasite. These results have revealed an entire new family of chemicals with good potential for development as better drugs against this disease.


Author(s):  
Herbert B. Tanowitz ◽  
Murray Wittner ◽  
Yvonne Kress ◽  
Robert M. Rosenbaum

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 92-OR ◽  
Author(s):  
WEI HUANG ◽  
YONG XU ◽  
YOUHUA XU ◽  
LUPING ZHOU ◽  
CHENLIN GAO

Sign in / Sign up

Export Citation Format

Share Document