scholarly journals Single-Particle Characterization of SARS-CoV-2 Isoelectric Point and Comparison to Variants of Interest

2021 ◽  
Vol 9 (8) ◽  
pp. 1606
Author(s):  
Oluwatoyin Areo ◽  
Pratik U. Joshi ◽  
Mark Obrenovich ◽  
Moncef Tayahi ◽  
Caryn L. Heldt

SARS-CoV-2, the cause of COVID-19, is a new, highly pathogenic coronavirus, which is the third coronavirus to emerge in the past 2 decades and the first to become a global pandemic. The virus has demonstrated itself to be extremely transmissible and deadly. Recent data suggest that a targeted approach is key to mitigating infectivity. Due to the proliferation of cataloged protein and nucleic acid sequences in databases, the function of the nucleic acid, and genetic encoded proteins, we make predictions by simply aligning sequences and exploring their homology. Thus, similar amino acid sequences in a protein usually confer similar biochemical function, even from distal or unrelated organisms. To understand viral transmission and adhesion, it is key to elucidate the structural, surface, and functional properties of each viral protein. This is typically first modeled in highly pathogenic species by exploring folding, hydrophobicity, and isoelectric point (IEP). Recent evidence from viral RNA sequence modeling and protein crystals have been inadequate, which prevent full understanding of the IEP and other viral properties of SARS-CoV-2. We have thus experimentally determined the IEP of SARS-CoV-2. Our findings suggest that for enveloped viruses, such as SARS-CoV-2, estimates of IEP by the amino acid sequence alone may be unreliable. We compared the experimental IEP of SARS-CoV-2 to variants of interest (VOIs) using their amino acid sequence, thus providing a qualitative comparison of the IEP of VOIs.

1973 ◽  
Vol 131 (3) ◽  
pp. 485-498 ◽  
Author(s):  
R. P. Ambler ◽  
Margaret Wynn

The amino acid sequences of the cytochromes c-551 from three species of Pseudomonas have been determined. Each resembles the protein from Pseudomonas strain P6009 (now known to be Pseudomonas aeruginosa, not Pseudomonas fluorescens) in containing 82 amino acids in a single peptide chain, with a haem group covalently attached to cysteine residues 12 and 15. In all four sequences 43 residues are identical. Although by bacteriological criteria the organisms are closely related, the differences between pairs of sequences range from 22% to 39%. These values should be compared with the differences in the sequence of mitochondrial cytochrome c between mammals and amphibians (about 18%) or between mammals and insects (about 33%). Detailed evidence for the amino acid sequences of the proteins has been deposited as Supplementary Publication SUP 50015 at the National Lending Library for Science and Technology, Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1973), 131, 5.


1980 ◽  
Vol 187 (3) ◽  
pp. 863-874 ◽  
Author(s):  
D M Johnson ◽  
J Gagnon ◽  
K B Reid

The serine esterase factor D of the complement system was purified from outdated human plasma with a yield of 20% of the initial haemolytic activity found in serum. This represented an approx. 60 000-fold purification. The final product was homogeneous as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis (with an apparent mol.wt. of 24 000), its migration as a single component in a variety of fractionation procedures based on size and charge, and its N-terminal amino-acid-sequence analysis. The N-terminal amino acid sequence of the first 36 residues of the intact molecule was found to be homologous with the N-terminal amino acid sequences of the catalytic chains of other serine esterases. Factor D showed an especially strong homology (greater than 60% identity) with rat ‘group-specific protease’ [Woodbury, Katunuma, Kobayashi, Titani, & Neurath (1978) Biochemistry 17, 811-819] over the first 16 amino acid residues. This similarity is of interest since it is considered that both enzymes may be synthesized in their active, rather than zymogen, forms. The three major CNBr fragments of factor D, which had apparent mol.wts. of 15 800, 6600 and 1700, were purified and then aligned by N-terminal amino acid sequence analysis and amino acid analysis. By using factor D labelled with di-[1,3-14C]isopropylphosphofluoridate it was shown that the CNBr fragment of apparent mol.wt. 6600, which is located in the C-terminal region of factor D, contained the active serine residue. The amino acid sequence around this residue was determined.


1963 ◽  
Vol 18 (12) ◽  
pp. 1032-1049 ◽  
Author(s):  
B. Wittmann-Liebold ◽  
H. G. Wittmann

The amino acid sequence of dahlemense, a naturally occuring strain of tobacco mosaic virus, has been determined and compared with that of the strain vulgare (Fig. 7). In this communication the experimental details are given for the elucidation of the amino acid sequences within two tryptic peptides with 65 amino acids.


2002 ◽  
Vol 76 (11) ◽  
pp. 5829-5834 ◽  
Author(s):  
Yoshio Mori ◽  
Mohammed Ali Borgan ◽  
Naoto Ito ◽  
Makoto Sugiyama ◽  
Nobuyuki Minamoto

ABSTRACT Avian rotavirus NSP4 glycoproteins expressed in Escherichia coli acted as enterotoxins in suckling mice, as did mammalian rotavirus NSP4 glycoproteins, despite great differences in the amino acid sequences. The enterotoxin domain of PO-13 NSP4 exists in amino acid residues 109 to 135, a region similar to that reported in SA11 NSP4.


1986 ◽  
Vol 235 (3) ◽  
pp. 895-898 ◽  
Author(s):  
M S López de Haro ◽  
A Nieto

An almost full-length cDNA coding for pre-uteroglobin from hare lung was cloned and sequenced. The derived amino acid sequence indicated that hare pre-uteroglobin contained 91 amino acids, including a signal peptide of 21 residues. Comparison of the nucleotide sequence of hare pre-uteroglobin cDNA with that previously reported for the rabbit gene indicated five silent point substitutions and six others leading to amino acid changes in the coding region. The untranslated regions of both pre-uteroglobin mRNAs were very similar. The amino acid changes observed are discussed in relation to the different progesterone-binding abilities of both homologous proteins.


1992 ◽  
Vol 281 (3) ◽  
pp. 703-708 ◽  
Author(s):  
H Takeuchi ◽  
Y Shibano ◽  
K Morihara ◽  
J Fukushima ◽  
S Inami ◽  
...  

The DNA encoding the collagenase of Vibrio alginolyticus was cloned, and its complete nucleotide sequence was determined. When the cloned gene was ligated to pUC18, the Escherichia coli expression vector, bacteria carrying the gene exhibited both collagenase antigen and collagenase activity. The open reading frame from the ATG initiation codon was 2442 bp in length for the collagenase structural gene. The amino acid sequence, deduced from the nucleotide sequence, revealed that the mature collagenase consists of 739 amino acids with an Mr of 81875. The amino acid sequences of 20 polypeptide fragments were completely identical with the deduced amino acid sequences of the collagenase gene. The amino acid composition predicted from the DNA sequence was similar to the chemically determined composition of purified collagenase reported previously. The analyses of both the DNA and amino acid sequences of the collagenase gene were rigorously performed, but we could not detect any significant sequence similarity to other collagenases.


2002 ◽  
Vol 68 (6) ◽  
pp. 2731-2736 ◽  
Author(s):  
Hirokazu Nankai ◽  
Wataru Hashimoto ◽  
Kousaku Murata

ABSTRACT When cells of Bacillus sp. strain GL1 were grown in a medium containing xanthan as a carbon source, α-mannosidase exhibiting activity toward p-nitrophenyl-α-d-mannopyranoside (pNP-α-d-Man) was produced intracellularly. The 350-kDa α-mannosidase purified from a cell extract of the bacterium was a trimer comprising three identical subunits, each with a molecular mass of 110 kDa. The enzyme hydrolyzed pNP-α-d-Man (Km = 0.49 mM) and d-mannosyl-(α-1,3)-d-glucose most efficiently at pH 7.5 to 9.0, indicating that the enzyme catalyzes the last step of the xanthan depolymerization pathway of Bacillus sp. strain GL1. The gene for α-mannosidase cloned most by using N-terminal amino acid sequence information contained an open reading frame (3,144 bp) capable of coding for a polypeptide with a molecular weight of 119,239. The deduced amino acid sequence showed homology with the amino acid sequences of α-mannosidases belonging to glycoside hydrolase family 38.


1970 ◽  
Vol 116 (3) ◽  
pp. 515-532 ◽  
Author(s):  
T. C. Elleman ◽  
J. Williams

1. The half-cystine content of ovotransferrin, measured as cysteic acid, was 31mol/80000g of protein. 2. The amino acid sequences of cysteic acid-containing peptides from performic acid-oxidized ovotransferrin were studied. 3. 34 unique cysteic acid residues were identified. 4. It is concluded that hen ovotransferrin does not consist of two identical halves or subunits.


Sign in / Sign up

Export Citation Format

Share Document