scholarly journals Molecular Identification of Family 38 α-Mannosidase of Bacillus sp. Strain GL1, Responsible for Complete Depolymerization of Xanthan

2002 ◽  
Vol 68 (6) ◽  
pp. 2731-2736 ◽  
Author(s):  
Hirokazu Nankai ◽  
Wataru Hashimoto ◽  
Kousaku Murata

ABSTRACT When cells of Bacillus sp. strain GL1 were grown in a medium containing xanthan as a carbon source, α-mannosidase exhibiting activity toward p-nitrophenyl-α-d-mannopyranoside (pNP-α-d-Man) was produced intracellularly. The 350-kDa α-mannosidase purified from a cell extract of the bacterium was a trimer comprising three identical subunits, each with a molecular mass of 110 kDa. The enzyme hydrolyzed pNP-α-d-Man (Km = 0.49 mM) and d-mannosyl-(α-1,3)-d-glucose most efficiently at pH 7.5 to 9.0, indicating that the enzyme catalyzes the last step of the xanthan depolymerization pathway of Bacillus sp. strain GL1. The gene for α-mannosidase cloned most by using N-terminal amino acid sequence information contained an open reading frame (3,144 bp) capable of coding for a polypeptide with a molecular weight of 119,239. The deduced amino acid sequence showed homology with the amino acid sequences of α-mannosidases belonging to glycoside hydrolase family 38.

1980 ◽  
Vol 187 (3) ◽  
pp. 863-874 ◽  
Author(s):  
D M Johnson ◽  
J Gagnon ◽  
K B Reid

The serine esterase factor D of the complement system was purified from outdated human plasma with a yield of 20% of the initial haemolytic activity found in serum. This represented an approx. 60 000-fold purification. The final product was homogeneous as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis (with an apparent mol.wt. of 24 000), its migration as a single component in a variety of fractionation procedures based on size and charge, and its N-terminal amino-acid-sequence analysis. The N-terminal amino acid sequence of the first 36 residues of the intact molecule was found to be homologous with the N-terminal amino acid sequences of the catalytic chains of other serine esterases. Factor D showed an especially strong homology (greater than 60% identity) with rat ‘group-specific protease’ [Woodbury, Katunuma, Kobayashi, Titani, & Neurath (1978) Biochemistry 17, 811-819] over the first 16 amino acid residues. This similarity is of interest since it is considered that both enzymes may be synthesized in their active, rather than zymogen, forms. The three major CNBr fragments of factor D, which had apparent mol.wts. of 15 800, 6600 and 1700, were purified and then aligned by N-terminal amino acid sequence analysis and amino acid analysis. By using factor D labelled with di-[1,3-14C]isopropylphosphofluoridate it was shown that the CNBr fragment of apparent mol.wt. 6600, which is located in the C-terminal region of factor D, contained the active serine residue. The amino acid sequence around this residue was determined.


1998 ◽  
Vol 42 (11) ◽  
pp. 2906-2913 ◽  
Author(s):  
James M. Battisti ◽  
Laura S. Smitherman ◽  
D. Scott Samuels ◽  
Michael F. Minnick

ABSTRACT This study describes the first isolation and characterization of spontaneous mutants conferring natural resistance to an antibiotic for any Bartonella species. The Bartonella bacilliformis gyrB gene, which encodes the B subunit of DNA gyrase, was cloned and sequenced. The gyrB open reading frame (ORF) is 2,079 bp and encodes a deduced amino acid sequence of 692 residues, corresponding to a predicted protein of ∼77.5 kDa. Sequence alignment indicates that B. bacilliformis GyrB is most similar to the GyrB protein from Bacillus subtilis (40.1% amino acid sequence identity) and that it contains the longest N-terminal tail (52 residues) of any GyrB characterized to date. The cloned B. bacilliformis gyrB was expressed in an Escherichia coli S30 cell extract and was able to functionally complement a temperature-sensitive E. coli Cour gyrB mutant (strain N4177). We isolated and characterized spontaneous mutants of B. bacilliformis resistant to coumermycin A1, an antibiotic that targets GyrB. Sequence analysis of gyrB from 12 Cour mutants ofB. bacilliformis identified single nucleotide transitions at three separate loci in the ORF. The predicted amino acid substitutions resulting from these transitions are Gly to Ser at position 124 (Gly124→Ser), Arg184→Gln, and Thr214→Ala or Thr214→Ile, which are analogous to mutated residues found in previously characterized resistant gyrB genes fromBorrelia burgdorferi, E. coli,Staphylococcus aureus, and Haloferax sp. The Cour mutants are three to five times more resistant to coumermycin A1 than the wild-type parental strain.


1999 ◽  
Vol 65 (12) ◽  
pp. 5546-5553 ◽  
Author(s):  
Kazuhiro Iwashita ◽  
Tatsuya Nagahara ◽  
Hitoshi Kimura ◽  
Makoto Takano ◽  
Hitoshi Shimoi ◽  
...  

ABSTRACT We cloned the genomic DNA and cDNA of bglA, which encodes β-glucosidase in Aspergillus kawachii, based on a partial amino acid sequence of purified cell wall-bound β-glucosidase CB-1. The nucleotide sequence of the cloned bglA gene revealed a 2,933-bp open reading frame with six introns that encodes an 860-amino-acid protein. Based on the deduced amino acid sequence, we concluded that the bglA gene encodes cell wall-bound β-glucosidase CB-1. The amino acid sequence exhibited high levels of homology with the amino acid sequences of fungal β-glucosidases classified in subfamily B. We expressed the bglA cDNA inSaccharomyces cerevisiae and detected the recombinant β-glucosidase in the periplasm fraction of the recombinant yeast.A. kawachii can produce two extracellular β-glucosidases (EX-1 and EX-2) in addition to the cell wall-bound β-glucosidase.A. kawachii in which the bglA gene was disrupted produced none of the three β-glucosidases, as determined by enzyme assays and a Western blot analysis. Thus, we concluded that thebglA gene encodes both extracellular and cell wall-bound β-glucosidases in A. kawachii.


1990 ◽  
Vol 269 (1) ◽  
pp. 85-91 ◽  
Author(s):  
J F Sinclair ◽  
S Wood ◽  
L Lambrecht ◽  
N Gorman ◽  
L Mende-Mueller ◽  
...  

The purpose of this study was to purify and characterize the forms of cytochrome P-450 induced in chicken liver by acetone or ethanol. Using high performance liquid ion-exchange chromatography, we were able to isolate at least four different forms of cytochrome P-450 which were induced by acetone in chicken liver. All four forms of cytochrome P-450 proved to be distinct proteins, as indicated by their N-terminal amino acid sequences and their reconstituted catalytic activities. Two of these forms, also induced by glutethimide in chicken embryo liver, appeared to be cytochromes P450IIH1 and P450IIH2. Both of these cytochromes P-450 have identical catalytic activities towards benzphetamine demethylation. However, they differ in their abilities to hydroxylate p-nitrophenol and to convert acetaminophen into a metabolite that forms a covalent adduct with glutathione at the 3-position. Another form of cytochrome P-450 induced by acetone is highly active in the hydroxylation of p-nitrophenol and in the conversion of acetaminophen to a reactive metabolite, similar to reactions catalysed by mammalian cytochrome P450IIE. Yet the N-terminal amino acid sequence of this form has only 30-33% similarity with cytochrome P450IIE purified from rat, rabbit and human livers. A fourth form of cytochrome P-450 was identified whose N-terminal amino acid sequence and enzymic activities do not correspond to any mammalian cytochromes P-450 reported to be induced by acetone or ethanol.


1991 ◽  
Vol 277 (2) ◽  
pp. 469-475 ◽  
Author(s):  
R Dumas ◽  
M Lebrun ◽  
R Douce

Acetohydroxy acid reductoisomerase (AHRI), the second enzyme in the parallel isoleucine/valine-biosynthetic pathway, catalyses an unusual two-step reaction in which the substrate, either 2-acetolactate or 2-aceto-2-hydroxybutyrate, is converted via an alkyl migration and an NADPH-dependent reduction to give 2,3-dihydroxy-3-methylbutyrate or 2,3-dihydroxy-3-methylvalerate respectively. We have isolated and characterized a full-length cDNA from a lambda gt11 spinach library encoding the complete acetohydroxy acid reductoisomerase protein precursor. The 2050-nucleotide sequence contains a 1785-nucleotide open reading frame. The derived amino acid sequence indicates that the protein precursor consists of 595 amino acid residues including a presequence peptide of 72 amino acid residues. The N-terminal sequence of the first 16 amino acid residues of the purified AHRI confirms the identity of the cDNA. The derived amino acid sequence from this open reading frame shows 23% identity with the deduced amino acid sequences of the Escherichia coli and Saccharomyces cerevisiae AHRI proteins. There are two blocks of conserved amino acid residues in these three proteins. One of these is a sequence similar to the ‘fingerprint’ region of the NAD(P)H-binding site found in a large number of NAD(P)H-dependent oxidoreductases. The other, a short sequence (Lys-Xaa-Xaa-Xaa-Xaa-Xaa-Xaa-Xaa-Ser-His-Gly-Phe) containing the amino acids lysine and histidine, could well be the catalytic site of the first step of the AHRI reaction. Southern-blot analysis indicated that AHRI is encoded by a single gene per haploid genome of about 7.5 kbp containing at least four introns.


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 938
Author(s):  
Kriti Chopra ◽  
Bhawna Burdak ◽  
Kaushal Sharma ◽  
Ajit Kembhavi ◽  
Shekhar C. Mande ◽  
...  

Decrypting the interface residues of the protein complexes provides insight into the functions of the proteins and, hence, the overall cellular machinery. Computational methods have been devised in the past to predict the interface residues using amino acid sequence information, but all these methods have been majorly applied to predict for prokaryotic protein complexes. Since the composition and rate of evolution of the primary sequence is different between prokaryotes and eukaryotes, it is important to develop a method specifically for eukaryotic complexes. Here, we report a new hybrid pipeline for predicting the protein-protein interaction interfaces in a pairwise manner from the amino acid sequence information of the interacting proteins. It is based on the framework of Co-evolution, machine learning (Random Forest), and Network Analysis named CoRNeA trained specifically on eukaryotic protein complexes. We use Co-evolution, physicochemical properties, and contact potential as major group of features to train the Random Forest classifier. We also incorporate the intra-contact information of the individual proteins to eliminate false positives from the predictions keeping in mind that the amino acid sequence of a protein also holds information for its own folding and not only the interface propensities. Our prediction on example datasets shows that CoRNeA not only enhances the prediction of true interface residues but also reduces false positive rates significantly.


Sign in / Sign up

Export Citation Format

Share Document