scholarly journals Characterization of Phosphate Solubilizing Bacterial Endophytes and Plant Growth Promotion In Vitro and in Greenhouse

2021 ◽  
Vol 9 (9) ◽  
pp. 1935
Author(s):  
Chuansheng Mei ◽  
Robert L. Chretien ◽  
B. Sajeewa Amaradasa ◽  
Yimeng He ◽  
Amy Turner ◽  
...  

Phosphate is one of the most important nutrients for plant growth and development, and only 0.1% of the phosphate in soils is available to plants. Currently, the use of excess phosphate fertilizer has caused surface and ground water pollution and water eutrophication, resulting in algal blooms in lakes and oceans. Therefore, it is imperative to explore alternative ways to solve these problems for sustainable agricultural production and improvement of soil fertility, while protecting the environment. Microorganisms from the rhizosphere and within plants are able to solubilize insoluble soil phosphate, making it available to plants. Five high phosphate solubilizing bacteria from our bacterial endophyte library were chosen for this study and identified as Pantoea vagans IALR611, Pseudomonas psychrotolerans IALR632, Bacillus subtilis IALR1033, Bacillus safensis IALR1035 and Pantoea agglomerans IALR1325. All five bacteria significantly promoted tall fescue growth in vitro. Greenhouse experiments showed that IALR1325 significantly promoted pepper and tomato growth, and IALR632 was the best in promoting tomato growth. In addition, all these bacteria had extracellular acid phosphatase and phytase activities. One of the mechanisms for phosphate solubilization by bacteria is pH reduction caused by gluconic acid production. Our results indicate that P. agglomerans IALR1325 is a promising bacterium for future applications.

Author(s):  
Rajiv Pathak ◽  
Vipassana Paudel ◽  
Anupama Shrestha ◽  
Janardan Lamichhane ◽  
Dhurva. P. Gauchan

Phosphorous (P) is an essential macronutrient and most soils contain high levels of P. However, its availability to plant is limited by rapid immobilization of phosphorous compounds to insoluble forms and hence plant available forms of P in soils are found in low amounts. Phosphate solubilizing bacteria provide an eco-friendly alternative to convert insoluble phosphates into plant available forms. In the present study, three phosphate solubilizing bacterial isolates (PB-1, PB-4 and VC-01) with visually significant phosphate solubilizing abilities were isolated from tomato rhizosphere soil. In-vitro study in pikovskaya’s agar revealed that isolate PB-1 had the highest phosphate solubilizing ability with a phosphate solubilizing index of 2.08±0.07 followed by isolate VC-01 (1.31±0.09) and PB-4 (1.24±0.08). Isolates were used as bacterial inoculum to assess their ability to promote tomato (Lycopersicon esculentum var. Srijana) seedling and plant growth in in-vitro and greenhouse experiment respectively. Isolate PB-4 showed best growth promotion in seedling assay whereas isolate PB-1 and VC-01 also promoted seedling growth compared to control. In greenhouse experiment however, isolates VC-01 and PB-1 significantly enhanced all parameters (shoot length, root length, shoot and root dry weight) compared to uninoculated control whereas isolate PB-4 had a positive effect on all parameters except root length.Kathmandu University Journal of Science, Engineering and TechnologyVol. 13, No. 2, 2017, page: 61-70


2019 ◽  
Vol 60 (5) ◽  
pp. 985-995
Author(s):  
Yusur Ramzi ◽  
Hutaf A. A. Alsalim

Sixteen soil samples were collected from wheat, barley and yellow corn rhizosphere in Abu-Ghraib, Aqraqof, Latifieh,Tarmiah, Jadriya and  of Agriculture in Baghdad university/ Baghdad city. The results found nine phosphate solubilizing bacteria (PSB) isolates (Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9), formed clear zones on National Botanical Research Institute's (NBRIP) agar. The solubility index (SI) of PSB isolates ranged from 2.00 to 3.66. Y4 have the highest SI (3.66) followed by Y3 and Y6 (3.33). Phosphate solubilization abilities varying from (20.10-39.00 μg.ml-1), Y4 was the highest (39.00 μg.ml-1) followed by Y3 (37.00μg.ml-1). The results of hydrolytic enzymes production showed that almost all nine isolates are able to produce protease and pectinase, while Y1 and Y2 showed negative results in cellulase production. Maximum ability for hydrogen cyanide (HCN) and indole acetic acid (IAA) production were showed byY3 and Y4 isolates. The isolate Y4 was found to be the most efficient isolate, so it was selected identified as Bacillus cereus using biochemical tests confirmed by VITEC 2 compact system. The results of High performance liquid chromatography (HPLC) revealed that Bacillus cereus produce oxalic acid (2.996), citric acid (9.117) and malic acid (3.734). Bacillus cereus (Y4) enhanced the growth of mung bean plants. A significant increase in branches number (12.33), plant length (83.0cm), fresh weight (27.25 g) and dry weight (1.427g) were obtained compared with control treatments. The main objective of this study is to isolate PSB and evaluate their roles in plant growth promotion. The results showed the high phosphate solubilization efficiency of PSB isolates and the identified isolates was found to be good enough for plant growth promoting.


2017 ◽  
Vol 66 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Jian Zhang ◽  
Peng Cheng Wang ◽  
Ling Fang ◽  
Qi-An Zhang ◽  
Cong Sheng Yan ◽  
...  

Phosphorus is a major essential macronutrient for plant growth, and most of the phosphorus in soil remains in insoluble form. Highly efficient phosphate-solubilizing bacteria can be used to increase phosphorus in the plant rhizosphere. In this study, 13 isolates were obtained from waste mushroom residues, which were composed of cotton seed hulls, corn cob, biogas residues, and wood flour. NBRIP solid medium was used for isolation according to the dissolved phosphorus halo. Eight isolates produced indole acetic acid (61.5%), and six isolates produced siderophores (46.2%). Three highest phosphate-dissolving bacterial isolates, namely, M01, M04, and M11, were evaluated for their beneficial effects on the early growth of tomato plants (Solanum lycopersicum L. Wanza 15). Strains M01, M04, and M11 significantly increased the shoot dry weight by 30.5%, 32.6%, and 26.2%, and root dry weight by 27.1%, 33.1%, and 25.6%, respectively. Based on 16S rRNA gene sequence comparisons and phylogenetic positions, strains M01 and M04 belonged to the genus Acinetobacter, and strain M11 belonged to the genus Ochrobactrum. The findings suggest that waste mushroom residues are a potential resource of plant growth-promoting bacteria exhibiting satisfactory phosphate-solubilizing for sustainable agriculture.


Author(s):  
Zhikang Wang ◽  
Ziyun Chen ◽  
Xiangxiang Fu

The inoculation of beneficial microorganisms to improve plant growth and soil properties is a promising strategy in the soil amendment. However, the effects of co-inoculation with phosphate-solubilizing bacteria (PSB) and N2-fixing bacteria (NFB) on the soil properties of typical C-deficient soil remain unclear. Based on a controlled experiment and a pot experiment, we examined the effects of PSB (M: Bacillus megaterium and F: Pseudomonas fluorescens), NFB (C: Azotobacter chroococcum and B: Azospirillum brasilence), and combined PSB and NFB treatments on C, N, P availability, and enzyme activities in sterilized soil, as well as the growth of Cyclocarya Paliurus seedlings grow in unsterilized soil. During a 60-day culture, prominent increases in soil inorganic N and available P contents were detected after bacteria additions. Three patterns were observed for different additions according to the dynamic bacterial growth. Synergistic effects between NFB and PSB were obvious, co-inoculations with NFB enhanced the accumulation of available P. However, decreases in soil available P and N were observed on the 60th day, which was induced by the decreases in bacterial quantities under C deficiency. Besides, co-inoculations with PSB and NFB resulted in greater performance in plant growth promotion. Aimed at amending soil with a C supply shortage, combined PSB and NFB treatments are more appropriate for practical fertilization at intervals of 30–45 days. The results demonstrate that co-inoculations could have synergistic interactions during culture and application, which may help with understanding the possible mechanism of soil amendment driven by microorganisms under C deficiency, thereby providing an alternative option for amending such soil.


2017 ◽  
Vol 9 (1) ◽  
pp. 167-172
Author(s):  
Sonal Bhardwaj ◽  
Bhawna Dipta ◽  
Shruti Kirti ◽  
Rajesh Kaushal

In the current study, a total of 25 isolates were isolated from the rhizosphere and roots of cauliflower (Brassica oleraceavar. botrytis L.) from the vicinity of Una district of Himachal Pradesh. The isolates were tested in vitro for their ability to solubilise phosphorous and produce siderophore, indole acetic acid (IAA), hydrogen cyanide (HCN) and antifungal metabolites against the soil borne pathogens. Results revealed that out of 25, only 4 rhizospheric isolates (SB5, SB11, SB8 and SB10) have maximum plant growth promoting attributes. The isolates were identified as Bacillus sp. on the basis of Bergey’s manual of systematic bacteriology. The isolate SB11 recorded highest phosphate solubilizing efficiency in solid medium (109.09%) and in liquid medium (350μg/ml). Maximum production of IAA (51.96μg/ml), siderophore (91.41%) and HCN were also observed for the same isolate. Further-more, the isolate SB11 produced highest antifungal metabolite production against Rhizoctoniasolani(37.11%), Sclerotiniasclerotiorum(41.11%), and Pythium sp. (71.11%) causing root rot, stalk rot and damping off diseases in cauliflower, respectively. The selected isolate (SB11) showed optimum growth at a pH of 7.0, 35°C temperature and 2% NaCl. On the basis of multifarious PGP-traits the SB11 isolate has tremendous potential to be used as a bioferti-lizer/bioprotectant for growth promotion and natural protection of cauliflower under low hill conditions of Himachal Pradesh.


2018 ◽  
Vol 3 (2) ◽  
pp. 105
Author(s):  
Diskit Dolkar ◽  
Phuntsog Dolkar ◽  
Tsering Stobdan ◽  
Anand K Katiyar

<p><em>Pseudomonas simiae</em> isolated from Seabuckthorn rhizosphere solubilized insoluble phosphate at 4-40ºC, pH 4-12 and in presence of 1-5% salt concentration. The optimum condition was observed at 28ºC, pH 6 and devoid of any salt stress. Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> was solubilized to a great extent than FePO<sub>4</sub> and AlPO<sub>4</sub>. The isolate possess plant growth promoting attributes such as IAA (32 mg l<sup>-1</sup>), siderophore (78%) and HCN (0.1 OD at A<sub>625</sub>) production. Seed bacterization resulted in 30% and 51% enhanced shoot and root length, respectively in tomato seedling. Pot experiments revealed enhanced plant growth in <em>P. simiae</em> treated plants in both green shade net and open field conditions. Fruit yield was 9.8% and 19.8% higher over control in open and shade net condition, respectively. <strong></strong></p>


2015 ◽  
Vol 20 (3) ◽  
pp. 121-131
Author(s):  
Luz Marina LIZARAZO FORERO ◽  
Elsa Giovanna ÁVILA MARTÍNEZ ◽  
Francisco CORTÉS PÉREZ

<p>El objetivo de esta investigación fue aislar y caracterizar bacterias solubilizadoras de fosfatos (BSF) asociadas a la rizosfera de <em>Baccharis macrantha </em>y <em>Viburnum triphyllum,</em> y evaluar su capacidad para solubilizar fosfatos en condiciones <em>in vitro</em>. Además se determinó el efecto de la inoculaciónde las cepas de BSF más eficientes sobre el crecimiento de <em>B. macrantha</em>. Las muestras de suelo rizosférico de <em>B. macrantha </em>y <em>V. triphyllum </em>fueron colectadas en los meses de mayo-período de lluvia y septiembre-período seco del 2012. Para la cuantificación de bacterias heterótrofas cultivables y BSF se empleó el método de recuento en placa en los medios Agar Tripticasa de Soya y Pikovskaya (PVK) respectivamente. La capacidad de solubilización de fosfatos de las cepas aisladas se estimó a partir del diámetro de los halos formados alrededor de las colonias en el medio de cultivo PVK después de 7 días de incubación a 28 °C. Los ensayos de inoculación en <em>B. macrantha </em>se realizaron con las BSF más eficientes<em>. </em>La inoculación de las BSF <em>B. firmus y P. fluorescens</em> de forma individual y como inoculante combinado mostro un efecto benéfico, incrementando significativamente el porcentaje de germinación de semillas, la altura de la plántula, la longitud de la raíz y el peso seco de <em>B. macrantha</em>. La inoculación de BSF podría ser considerada una estrategia para mejorar el crecimiento y establecimiento de <em>B. macrantha</em> en pastizales abandonados.</p><p><strong>Growth Promotion of <em>Baccharis macrantha </em>(Asteraceae) by Phosphate Solubilizing Rhizosphere Bacteria</strong>     </p><p>The objectives of this research was to isolate and characterize phosphate solubilizing bacteria (BSF) associated to the rhizosphere of <em>Baccharis macrantha</em> and <em>Viburnum triphyllum</em>, and to assess their ability to solubilize phosphate under conditions in vitro. Furthermore to determine the effect of inoculation of the strains BSF more efficient on the growth of <em>B. macrantha</em>. Rhizosphere soil samples of <em>B. macrantha</em> and <em>V. triphyllum </em>were collected in the months of May-rainy season and September-period dry the 2012. Trypticase Soya Agar and Pikovskaya (PVK) were used for quantification of culturable heterotrophic bacteria and BSF, respectively. The phosphate solubilizing capacity of the isolated strains was estimated from the diameter of the halo around the colonies formed in the culture medium PVK after 7 days incubation at 28 °C. Inoculation assays were performed with more efficient BSF in <em>B. macrantha. </em>Inoculation of BSF <em>Bacillus firmus</em> and <em>Pseudomona fluorescens </em>individually and as inoculant combined showed a beneficial effect, significantly increasing the percentage of seed germination, seedling height, root length and dry weight of <em>B . macrantha</em>. Inoculation the BSF could be considered a strategy to improve the growth and development of <em>B. macrantha</em> in abandoned pastures</p>


2020 ◽  
Vol 8 (11) ◽  
pp. 1844
Author(s):  
Gylaine Vanissa Tchuisseu Tchakounté ◽  
Beatrice Berger ◽  
Sascha Patz ◽  
Matthias Becker ◽  
Henri Fankem ◽  
...  

Plants are often challenged by multiple abiotic stresses simultaneously. The inoculation of beneficial bacteria is known to enhance plant growth under these stresses, such as phosphorus starvation or salt stress. Here, for the first time, we assessed the efficiency of selected beneficial bacterial strains in improving tomato plant growth to better cope with double stresses in salty and P-deficient soil conditions. Six strains of Arthrobacter and Bacillus with different reservoirs of plant growth-promoting traits were tested in vitro for their abilities to tolerate 2–16% (w/v) NaCl concentrations, and shown to retain their motility and phosphate-solubilizing capacity under salt stress conditions. Whether these selected bacteria promote tomato plant growth under combined P and salt stresses was investigated in greenhouse experiments. Bacterial isolates from Cameroonian soils mobilized P from different phosphate sources in shaking culture under both non-saline and saline conditions. They also enhanced plant growth in P-deficient and salt-affected soils by 47–115%, and their PGP effect was even increased in higher salt stress conditions. The results provide valuable information for prospective production of effective bio-fertilizers based on the combined application of local rock phosphate and halotolerant phosphate-solubilizing bacteria. This constitutes a promising strategy to improve plant growth in P-deficient and salt-affected soils.


Sign in / Sign up

Export Citation Format

Share Document