scholarly journals Clinical Application of Metagenomic Next-Generation Sequencing in Patients with Hematologic Malignancies Suffering from Sepsis

2021 ◽  
Vol 9 (11) ◽  
pp. 2309
Author(s):  
Wang-Da Liu ◽  
Ting-Yu Yen ◽  
Po-Yo Liu ◽  
Un-In Wu ◽  
Prerana Bhan ◽  
...  

Background: Sepsis remains a common but fatal complication among patients with immune suppression. We aimed to investigate the performance of metagenomic next-generation sequencing (mNGS) compared with standard microbiological diagnostics in patients with hematologic malignancies. Methods: We performed a prospective study from June 2019 to December 2019. Adult patients with hematologic malignancies and a clinical diagnosis of sepsis were enrolled. Conventional diagnostic methods included blood cultures, serum galactomannan for Aspergillus, cryptococcal antigen and cytomegalovirus (CMV) viral loads. Blood samples for mNGS were collected within 24 h after hypotension developed. Results: Of 24 patients enrolled, mNGS and conventional diagnostic methods (blood cultures, serology testing and virus RT-PCR) reached comparable positive results in 9 cases. Of ten patients, mNGS was able to identify additional pathogens compared with conventional methods; most of the pathogens were virus. Conclusion: Our results show that mNGS may serve as adjunctive diagnostic tool for the identification of pathogens of hematologic patients with clinically sepsis.

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Binghua Zhu ◽  
Jing Tang ◽  
Rong Fang ◽  
Xuejie Fei ◽  
Qing Wang ◽  
...  

Abstract Background We diagnosed a clinical case of pulmonary infection involving Mycobacterium tuberculosis and Tropheryma whipplei in a patient with acute respiratory distress syndrome. The diagnosis was assisted by metagenomic next-generation sequencing of bronchoalveolar lavage fluid. Case presentation A 44-year-old Han Chinese inmate was transferred to the emergency department because of dry cough, chest tightness, and shortness of breath. The patient’s body temperature rose to 39.3 °C following empirical cephalosporin treatment for 1 week. The blood CD4+/CD8+ ratio was 0.7, suggesting immunodeficiency. Routine microbiological tests were performed, and tuberculosis interferon gamma release assays were positive. Mycobacterium tuberculosis polymerase chain reaction was also positive. Chest computed tomography scan revealed miliary nodules and ground-glass opacifications, which were in accordance with tuberculosis. To fully examine the etiology, we performed routine laboratory tests and metagenomic sequencing, the results of which indicated the presence of Mycobacterium tuberculosis and Tropheryma whipplei. We administered anti-tuberculosis regimen in combination with trimethoprim/sulfamethoxazole. The patient recovered, with chest computed tomography scan showing absorption of lesions. Conclusions Compared with traditional diagnostic methods such as culture and serology, metagenomic next-generation sequencing has the advantage of detecting a wide array of microorganisms in a single test and therefore can be used for clinical diagnosis of rare pathogens and microbial coinfections. It is particularly useful for immunocompromised patients as they are more prone to infection by opportunistic microorganisms.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3854-3854 ◽  
Author(s):  
Amy E Knight Johnson ◽  
Lucia Guidugli ◽  
Kelly Arndt ◽  
Gorka Alkorta-Aranburu ◽  
Viswateja Nelakuditi ◽  
...  

Abstract Introduction: Myelodysplastic syndrome (MDS) and acute leukemia (AL) are a clinically diverse and genetically heterogeneous group of hematologic malignancies. Familial forms of MDS/AL have been increasingly recognized in recent years, and can occur as a primary event or secondary to genetic syndromes, such as inherited bone marrow failure syndromes (IBMFS). It is critical to confirm a genetic diagnosis in patients with hereditary predisposition to hematologic malignancies in order to provide prognostic information and cancer risk assessment, and to aid in identification of at-risk or affected family members. In addition, a molecular diagnosis can help tailor medical management including informing the selection of family members for allogeneic stem cell transplantation donors. Until recently, clinical testing options for this diverse group of hematologic malignancy predisposition genes were limited to the evaluation of single genes by Sanger sequencing, which is a time consuming and expensive process. To improve the diagnosis of hereditary predisposition to hematologic malignancies, our CLIA-licensed laboratory has recently developed Next-Generation Sequencing (NGS) panel-based testing for these genes. Methods: Thirty six patients with personal and/or family history of aplastic anemia, MDS or AL were referred for clinical diagnostic testing. DNA from the referred patients was obtained from cultured skin fibroblasts or peripheral blood and was utilized for preparing libraries with the SureSelectXT Enrichment System. Libraries were sequenced on an Illumina MiSeq instrument and the NGS data was analyzed with a custom bioinformatic pipeline, targeting a panel of 76 genes associated with IBMFS and/or familial MDS/AL. Results: Pathogenic and highly likely pathogenic variants were identified in 7 out of 36 patients analyzed, providing a positive molecular diagnostic rate of 20%. Overall, 6 out of the 7 pathogenic changes identified were novel. In 2 unrelated patients with MDS, heterozygous pathogenic sequence changes were identified in the GATA2 gene. Heterozygous pathogenic changes in the following autosomal dominant genes were each identified in a single patient: RPS26 (Diamond-Blackfan anemia 10), RUNX1 (familial platelet disorder with propensity to myeloid malignancy), TERT (dyskeratosis congenita 4) and TINF2 (dyskeratosis congenita 3). In addition, one novel heterozygous sequence change (c.826+5_826+9del, p.?) in the Fanconi anemia associated gene FANCA was identified. . The RNA analysis demonstrated this variant causes skipping of exon 9 and results in a premature stop codon in exon 10. Further review of the NGS data provided evidence of an additional large heterozygous multi-exon deletion in FANCA in the same patient. This large deletion was confirmed using array-CGH (comparative genomic hybridization). Conclusions: This study demonstrates the effectiveness of using NGS technology to identify patients with a hereditary predisposition to hematologic malignancies. As many of the genes associated with hereditary predisposition to hematologic malignancies have similar or overlapping clinical presentations, analysis of a diverse panel of genes is an efficient and cost-effective approach to molecular diagnostics for these disorders. Unlike Sanger sequencing, NGS technology also has the potential to identify large exonic deletions and duplications. In addition, RNA splicing assay has proven to be helpful in clarifying the pathogenicity of variants suspected to affect splicing. This approach will also allow for identification of a molecular defect in patients who may have atypical presentation of disease. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 144-144
Author(s):  
Vera Grossmann ◽  
Alexander Kohlmann ◽  
Claudia Haferlach ◽  
Hans-Ulrich Klein ◽  
Martin Dugas ◽  
...  

Abstract Abstract 144 PicoTiterPlate (PTP) pyrosequencing allows the detection of low-abundance oncogene aberrations in complex samples even with low tumor content. Here, we compared deep sequencing data of two Next-Generation Sequencing (NGS) assays to detect molecular mutations using a PCR-based strategy and, in addition, to uncover inversions, translocations, and insertions in a targeted sequence enrichment workflow (454 Life Sciences, Roche Diagnostics Corporation, Branford, CT). First, we studied 95 patients (CMML, n=81; AML, n=6; MDS, n=3; MPS, n=3; ET, n=2) using the amplicon approach and investigated seven candidate genes with relevance in oncogenesis of myeloid malignancies: TET2, RUNX1, JAK2, MPL, KRAS, NRAS, and CBL. 43 primer pairs were designed to cover the complete coding regions of TET2, RUNX1 (beta isoform), and hotspot regions of the latter genes. In total, 4128 individual PCR reactions were performed with DNA isolated from bone marrow mononuclear cells, followed by product purification, fluorometric quantitation, and equimolar pooling of the corresponding 43 amplicon products to generate one single sequence library per patient. For sequencing, a 454 8-lane PTP was used applying standard FLX chemistry and representing one patient per lane. The median number of base pairs sequenced per patient was 9.23 Mb. For each amplicon a median of 840 reads was generated (coverage range: 485–1929 reads). As initial proof-of-concept analysis 27 of the 95 patients with known mutations (n=32) as detected by conventional sequencing or melting curve analyses were investigated (range of cells carrying the respective mutation: 1.1% for JAK2 V617F to 98.14% for TET2 C1464X). In all cases, 454 NGS confirmed results from routine diagnostic methods (GS Amplicon Variant Analyzer software version 2.0.01). We then investigated the remaining 69 CMML patients: In median, 2 variances (range 1–8 variances), i.e. differences in comparison to the reference sequence, per patient were detected. These variances included both point mutations in all candidate genes and large deletions (12-19 bp) in CBL, RUNX1, and TET2. Only 20/81 patients of the CMML-cohort (24.69%) were without any detectable mutation. Secondly, in a cohort of six AML bone marrow specimens a custom NimbleGen array (385K format; Madison, WI) was used to perform a targeted DNA sequence enrichment procedure. In total, capture probes spanning 1.91 Mb were designed to represent all coding regions of 92 target genes (1559 exons) with relevance in hematological malignancies (e.g. KIT, NF1, TP53, BCR, ABL1, NPM1, or FLT3). In addition, the complete genomic regions were targeted for RUNX1, CBFB, and MLL. For sequencing, 454 Titanium chemistry was applied, loading three patients per lane on a 2-lane PTP including three molecular identifiers (MIDs) each. Data analysis was performed using the GS Reference Mapper software version 2.0.01. For the enrichment assay, the median enrichment of the targeted genomic loci was 207-fold, as assessed by ligation-mediated LM-PCR. Overall, 1,098,132 reads were generated in the two lanes, yielding a total sequence length of 386,097,740 bases. In median, 96.52% of the sequenced bases mapped against the human genome, and 66.0% were derived from the customized NimbleGen array capture probes, resulting in a median coverage of 18.7-fold . With this method it was possible to detect and confirm point mutations (KIT, FLT3-TKD, and KRAS) and insertions (FLT3-ITD). Moreover, by capturing chimeric DNA fragments and generating reads mapping to both fusion partners this approach detected balanced aberrations, i.e. inv(16)(p13q22) and the translocations t(8;21)(q22;q22) or t(9;11)(p22;q23). In conclusion, both assays to specifically sequence targeted regions with oncogenic relevance on a NGS platform demonstrated promising results and are feasible. The amplicon approach is more suitable for detection of mutations in a routine setting and is ideally suited for large genes such as TET2, ATM, and NF1, which are labor-intensive to sequence conventionally. The array-based capturing assay is characterized by a complex and time-consuming workflow with low-throughput. However, the ability to detect balanced genomic aberrations which are detectable thus far only by cytogenetics and FISH has the potential to become an important diagnostic assay, especially in tumors in which cytogenetics can not be applied successfully. Disclosures: Grossmann: MLL Munich Leukemia Laboratory: Employment. Kohlmann:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership. Dicker:MLL Munich Leukemia Laboratory: Employment. Kazak:MLL Munich Leukemia Laboratory: Employment. Schindela:MLL Munich Leukemia Laboratory: Employment. Schnittger:MLL Munich Leukemia Laboratory: Equity Ownership. Kern:MLL Munich Leukemia Laboratory: Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership.


2020 ◽  
Vol 144 (8) ◽  
pp. 959-966 ◽  
Author(s):  
Alissa Keegan ◽  
Julia A. Bridge ◽  
Neal I. Lindeman ◽  
Thomas A. Long ◽  
Jason D. Merker ◽  
...  

Context.— As laboratories increasingly turn from single-analyte testing in hematologic malignancies to next-generation sequencing–based panel testing, there is a corresponding need for proficiency testing to ensure adequate performance of these next-generation sequencing assays for optimal patient care. Objective.— To report the performance of laboratories on proficiency testing from the first 4 College of American Pathologists Next-Generation Sequencing Hematologic Malignancy surveys. Design.— College of American Pathologists proficiency testing results for 36 different engineered variants and/or allele fractions as well as a sample with no pathogenic variants were analyzed for accuracy and associated assay performance characteristics. Results.— The overall sensitivity observed for all variants was 93.5% (2190 of 2341) with 99.8% specificity (22 800 of 22 840). The false-negative rate was 6.5% (151 of 2341), and the largest single cause of these errors was difficulty in identifying variants in the sequence of CEBPA that is rich in cytosines and guanines. False-positive results (0.18%; 40 of 22 840) were most likely the result of preanalytic or postanalytic errors. Interestingly, the variant allele fractions were almost uniformly lower than the engineered fraction (as measured by digital polymerase chain reaction). Extensive troubleshooting identified a multifactorial cause for the low variant allele fractions, a result of an interaction between the linearized nature of the plasmid and the Illumina TruSeq chemistry. Conclusions.— Laboratories demonstrated an overall accuracy of 99.2% (24 990 of 25 181) with 99.8% specificity and 93.5% sensitivity when examining 36 clinically relevant somatic single-nucleotide variants with a variant allele fraction of 10% or greater. The data also highlight an issue with artificial linearized plasmids as survey material for next-generation sequencing.


Sign in / Sign up

Export Citation Format

Share Document