Next-Generation Sequencing (NGS) in CMML, MDS and AML Detects Molecular Mutations in Oncogenes and Allows the Identification of Balanced Chromosomal Abnormalities with Extraordinary Sensitivity and Specificity.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 144-144
Author(s):  
Vera Grossmann ◽  
Alexander Kohlmann ◽  
Claudia Haferlach ◽  
Hans-Ulrich Klein ◽  
Martin Dugas ◽  
...  

Abstract Abstract 144 PicoTiterPlate (PTP) pyrosequencing allows the detection of low-abundance oncogene aberrations in complex samples even with low tumor content. Here, we compared deep sequencing data of two Next-Generation Sequencing (NGS) assays to detect molecular mutations using a PCR-based strategy and, in addition, to uncover inversions, translocations, and insertions in a targeted sequence enrichment workflow (454 Life Sciences, Roche Diagnostics Corporation, Branford, CT). First, we studied 95 patients (CMML, n=81; AML, n=6; MDS, n=3; MPS, n=3; ET, n=2) using the amplicon approach and investigated seven candidate genes with relevance in oncogenesis of myeloid malignancies: TET2, RUNX1, JAK2, MPL, KRAS, NRAS, and CBL. 43 primer pairs were designed to cover the complete coding regions of TET2, RUNX1 (beta isoform), and hotspot regions of the latter genes. In total, 4128 individual PCR reactions were performed with DNA isolated from bone marrow mononuclear cells, followed by product purification, fluorometric quantitation, and equimolar pooling of the corresponding 43 amplicon products to generate one single sequence library per patient. For sequencing, a 454 8-lane PTP was used applying standard FLX chemistry and representing one patient per lane. The median number of base pairs sequenced per patient was 9.23 Mb. For each amplicon a median of 840 reads was generated (coverage range: 485–1929 reads). As initial proof-of-concept analysis 27 of the 95 patients with known mutations (n=32) as detected by conventional sequencing or melting curve analyses were investigated (range of cells carrying the respective mutation: 1.1% for JAK2 V617F to 98.14% for TET2 C1464X). In all cases, 454 NGS confirmed results from routine diagnostic methods (GS Amplicon Variant Analyzer software version 2.0.01). We then investigated the remaining 69 CMML patients: In median, 2 variances (range 1–8 variances), i.e. differences in comparison to the reference sequence, per patient were detected. These variances included both point mutations in all candidate genes and large deletions (12-19 bp) in CBL, RUNX1, and TET2. Only 20/81 patients of the CMML-cohort (24.69%) were without any detectable mutation. Secondly, in a cohort of six AML bone marrow specimens a custom NimbleGen array (385K format; Madison, WI) was used to perform a targeted DNA sequence enrichment procedure. In total, capture probes spanning 1.91 Mb were designed to represent all coding regions of 92 target genes (1559 exons) with relevance in hematological malignancies (e.g. KIT, NF1, TP53, BCR, ABL1, NPM1, or FLT3). In addition, the complete genomic regions were targeted for RUNX1, CBFB, and MLL. For sequencing, 454 Titanium chemistry was applied, loading three patients per lane on a 2-lane PTP including three molecular identifiers (MIDs) each. Data analysis was performed using the GS Reference Mapper software version 2.0.01. For the enrichment assay, the median enrichment of the targeted genomic loci was 207-fold, as assessed by ligation-mediated LM-PCR. Overall, 1,098,132 reads were generated in the two lanes, yielding a total sequence length of 386,097,740 bases. In median, 96.52% of the sequenced bases mapped against the human genome, and 66.0% were derived from the customized NimbleGen array capture probes, resulting in a median coverage of 18.7-fold . With this method it was possible to detect and confirm point mutations (KIT, FLT3-TKD, and KRAS) and insertions (FLT3-ITD). Moreover, by capturing chimeric DNA fragments and generating reads mapping to both fusion partners this approach detected balanced aberrations, i.e. inv(16)(p13q22) and the translocations t(8;21)(q22;q22) or t(9;11)(p22;q23). In conclusion, both assays to specifically sequence targeted regions with oncogenic relevance on a NGS platform demonstrated promising results and are feasible. The amplicon approach is more suitable for detection of mutations in a routine setting and is ideally suited for large genes such as TET2, ATM, and NF1, which are labor-intensive to sequence conventionally. The array-based capturing assay is characterized by a complex and time-consuming workflow with low-throughput. However, the ability to detect balanced genomic aberrations which are detectable thus far only by cytogenetics and FISH has the potential to become an important diagnostic assay, especially in tumors in which cytogenetics can not be applied successfully. Disclosures: Grossmann: MLL Munich Leukemia Laboratory: Employment. Kohlmann:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership. Dicker:MLL Munich Leukemia Laboratory: Employment. Kazak:MLL Munich Leukemia Laboratory: Employment. Schindela:MLL Munich Leukemia Laboratory: Employment. Schnittger:MLL Munich Leukemia Laboratory: Equity Ownership. Kern:MLL Munich Leukemia Laboratory: Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 417-417 ◽  
Author(s):  
Alexander Kohlmann ◽  
Vera Grossmann ◽  
Claudia Haferlach ◽  
Beray Kazak ◽  
Sonja Schindela ◽  
...  

Abstract Abstract 417 Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic malignancy that is characterized by features of both a myeloproliferative neoplasm and a myelodysplastic syndrome. Here, we analyzed 81 CMML cases (45 CMML-1, 36 CMML-2). In chromosome banding analysis 59/76 (77.6%) patients showed a normal karyotype (data not availabel in 5 cases). Recurrent chromosome aberrations were trisomy 8 (n=6; 7.9%), monosomy 7 (n=3; 3.9%), and loss of the Y-chromosome (n=5; 6.6%). Fluorescence in situ hybridization (FISH) detected the deletion of one allele of the TET2 gene in 4/71 cases (5.6%). Thus, the majority of cases can not be genetically characterized by these techniques. Therefore, we applied next-generation sequencing (NGS) technology to investigate 7 candidate genes, represented by 43 PCR-products, at known mutational hotspot regions, i.e. CBL (exons 8 and 9), JAK2 (exons 12 and 14), MPL (exon 10), NRAS (exons 2 and 3), and KRAS (exons 2 and 3). In addition, complete coding regions were analyzed for RUNX1 (beta isoform) and TET2. NGS was performed using 454 FLX amplicon chemistry (Roche Diagnostics Corporation, Branford, CT). The median number of base pairs sequenced per patient was 9.24 Mb. For each target gene a median of 911 reads was generated (coverage range: 736-fold to 1606-fold). This approach allowed a high-sensitive detection of molecular mutations, e.g. detecting the JAK2 V617F mutation down to 1.16% of reads. In total, 146 variances were detected by this comprehensive molecular mutation screening (GS Amplicon Variant Analyzer software version 2.0.01). In 80.4% of variances consistent results were obtained after confirming NGS mutations with melting curve analysis and conventional sequencing. In the remaining discrepant variances (19.6%) NGS deep-sequencing outperformed conventional methods due to the higher sensitivity of the platform. After excluding 19 polymorphisms or silent mutations 127 distinct mutations in 61/81 patients (75.3%) were detected: CBL: n=21 point mutations and one deletion (18 bp) found in 20 cases (24%); JAK2: n=8 mutations (V617F) found in 8 cases (9.8%); MPL: no mutations found; NRAS: n=23 mutations found in 18 cases (22.2%); KRAS: n=12 mutations found in 10 cases (12.3%); RUNX1: n=6 point mutations and one deletion (14 bp) found in 7 cases (8.6%); and TET2: n=49 point mutations and 6 deletions (2-19 bp; 5/6 out-of-frame) found in 41 cases (50.6%). Furthermore, in 21 TET2-mutated cases 11 mutations previously described in the literature were detectable, whereas 28 cases carried novel mutations (n=28). In the cohort of TET2-mutated cases 17/41 (41.3%) patients harbored TET2 abnormalities as sole aberration. Interestingly, CBL mutations were found to be significantly associated with TET2 mutations (Fisher's exact test, p=0.008). In 17 of 20 (85.0%) CBL-mutated cases TET2 abnormalities were concomitantly observed. In contrast, no significant associations were found between any of the point mutations or deletions and the karyotype. There were also no associations observed between molecular aberrations and the diagnostic categories CMML-1 and CMML-2. With respect to clinical data a trend for better outcome was seen for patients that carried either or both TET2 and CBL mutations (median OS 130.4 vs. 17.3 months, alive at 2 yrs: 72.0% vs. 43.9%; p=0.13). In conclusion, 75.3% of CMMLs harbored at least one molecular aberration. In median 2 mutations per case were observed. Compared to limited data from the literature we detected not only a higher frequency of CBL mutations, but also add data on novel TET2 mutations. In particular, comprehensive NGS screening here for the first time has demonstrated its strength to further genetically characterize and delineate prognostic groups within this type of hematological malignancy. Disclosures: Kohlmann: MLL Munich Leukemia Laboratory: Employment. Grossmann:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership. Kazak:MLL Munich Leukemia Laboratory: Employment. Schindela:MLL Munich Leukemia Laboratory: Employment. Weiss:MLL Munich Leukemia Laboratory: Employment. Dicker:MLL Munich Leukemia Laboratory: Employment. Schnittger:MLL Munich Leukemia Laboratory: Equity Ownership. Kern:MLL Munich Leukemia Laboratory: Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership.


2016 ◽  
Vol 4 (1) ◽  
pp. 17-19
Author(s):  
Margherita Nannini ◽  
Maria A. Pantaleo

Advances in tumor genome sequencing using next generation sequencing (NGS) technologies have facilitated a greater understanding of the genetic abnormalities involved in cancer development and progression, dramatically changing oncology research. There are several different types of NGS technologies. Whole genome sequencing (WGS) determines the sequence of the complete genome, providing information on both coding and non-coding regions and structural variants. However, use is limited by the large volume of data generated, and associated time and resource costs. Whole exome sequencing (WES) determines the sequence of coding regions only, making it faster and cheaper than WGS, and the functional consequences of variants are easier to interpret. However, all variations in non-coding regions are missed. WGS and WES are often used together to maximize detection of variants. A less costly approach is the use of targeted sequencing, which focuses on particular regions of interest, based on their biological relevance. NGS technologies can also be used to sequence RNA, referred to as RNA-Seq. All these NGS technologies, individually or in combination, have a number of potential applications, including identification of biomarkers, and development of diagnostic and therapeutic strategies. However, although advances have been made, there are a number of limitations to be overcome before NGS technologies are routinely applied in both research and clinical practice.


2020 ◽  
Vol 20 (22) ◽  
pp. 1968-1980
Author(s):  
Nidhi Shukla ◽  
Narmadhaa Siva ◽  
Babita Malik ◽  
Prashanth Suravajhala

In the recent past, next-generation sequencing (NGS) approaches have heralded the omics era. With NGS data burgeoning, there arose a need to disseminate the omic data better. Proteogenomics has been vividly used for characterising the functions of candidate genes and is applied in ascertaining various diseased phenotypes, including cancers. However, not much is known about the role and application of proteogenomics, especially Prostate Cancer (PCa). In this review, we outline the need for proteogenomic approaches, their applications and their role in PCa.


2015 ◽  
Vol 446 ◽  
pp. 132-140 ◽  
Author(s):  
Andrey S. Glotov ◽  
Sergey V. Kazakov ◽  
Elena A. Zhukova ◽  
Anton V. Alexandrov ◽  
Oleg S. Glotov ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4076-4076
Author(s):  
Song Jinming ◽  
Mohammad Omar Hussaini ◽  
Haipeng Shao ◽  
Eric Padron ◽  
Jeffrey E Lancet ◽  
...  

Abstract Background: Primary myelofibrosis (PMF) and polycythemia vera (PV) are myeloproliferative neoplasms (MPN) that can both share a similar bone marrow morphology with panmyelosis and fibrosis, posing a diagnostic challenge, particularly when the differential is between cellular phase of PMF and PV, or fibrotic PMF and post-PV myelofibrosis. Despite advances in genomic analysis, limited information is known regarding their differences in genetic profile/signature. It has been well known that constitutive tyrosine kinase activation due to JAK2 V617F mutation is seen in both PV and PMF. MPL and CALR mutations do segregate with PMF but may not be found in all cases. Accordingly, we analyzed next generation sequencing (NGS) data to look for potential biomarkers that may further aid in distinguishing these two entities. Design: The IRB approved study intended to recruit patients with diagnosis of PMF and PV who have myeloid gene mutation profiles available. Clinical information and molecular data from both a CLIA certified reference laboratory and our institution from May 2011 to June 2015 were retrieved. Cases with other myeloid neoplasms were excluded. The gene mutation profiles by Next Generation sequencing (NGS) and conventional karyotyping were acquired and compared. Clinicopathologic features including disease progression, degree of fibrosis in bone marrow, percentage of blasts, bone marrow cellularity, and circulating blood count (CBC) are correlated. Student t-test was used for numerical variables and Chi square (x2) test was used for categorical variables. Results: Of the 62 patients qualified in the study, 36 patients were diagnosed with PMF (Age 68.5 ± 12.2, M:F ratio of 1:1) and 26 patients with PV (Age 66.5 ± 11.9, M:F ratio of 1.6). The majority of patients (34/36 PMF and 26/26 PV) showed persistent disease with only two PMF patients progressing to acute myeloid leukemia (AML). In accordance with prior reports, JAK2 V617F mutation was more prevalent in PV (23/26, 88%) than in PMF (17/36, 47%)(p<0.05), while MPL mutation was found in PMF (5/36, 14%) but not in PV (0/26) (p<0.001). Overall, PMF patients tended to have more non JAK2 mutations (mean = 1.6 ± 1) than PV patients (mean= 0.54 ± 0.65) (p = 0.005), even though the PV patients tended to have a longer history of disease. Interestingly, ASXL1 mutations (mainly frame-shift, reportedly pathologic) appear to be more prevalent in PMF (28%) than in PV (8%) patients (p = 0.058). SRSF2 mutations were found in 14% of PMF patients but absent in all 26 PV patients (p=0.068). Mutations in a subset of other analyzed genes (TET2, EZH2, IDH2, and CUX1) were also more frequent in PMF than in PV patients (25% vs 15%, 8% vs 0%, 8% vs 0%, and 6% vs 0%, respectively), but not statistically significant due to limited number of cases. The highest number of mutations (n=4) was in a case of PMF that progressed to AML, suggesting a 'dosage' effect of driver mutations on outcomes similar to that described in MDS. The other patient that progressed from PMF to AML harbored JAK2, ASXL1, SRSF2 mutations along with del(20q). ASXL1 mutation was associated with del(20q) in 4/62 cases, all of which were PMF patients including the case that has progressed to AML. JAK2 mutation was associated with del(20q) in 7 out of the 62 cases, 6 (86%) of which were PMF patients. No gene mutations were uniquely associated with degree of fibrosis, blast count, cellularity, white blood cell counts, hemoglobin, or platelet counts. Conclusion: Our results indicate that PMF patients tend to have more non JAK2 mutations (e.g., ASXL1, SRSF2) than PV. Furthermore, the mutations, including JAK2 mutations, are more likely to be associated with del(20q) in PMF patients. Our findings provide insight into the genetic landscape of PMF and PV and offer potential biomarkers that may be helpful to distinguish between these entities, thus benefiting patient stratification for clinical practice. Disclosures Lancet: Seattle Genetics: Consultancy; Pfizer: Research Funding; Boehringer-Ingelheim: Consultancy; Kalo-Bios: Consultancy; Amgen: Consultancy; Celgene: Consultancy, Research Funding. Komrokji:Celgene: Consultancy, Research Funding; Incite: Consultancy; Novartis: Speakers Bureau; GSK: Research Funding.


2021 ◽  
Vol 22 (22) ◽  
pp. 12225
Author(s):  
Payal Ganguly ◽  
Bradley Toghill ◽  
Shelly Pathak

The aging of bone marrow (BM) remains a very imperative and alluring subject, with an ever-increasing interest among fellow scientists. A considerable amount of progress has been made in this field with the established ‘hallmarks of aging’ and continued efforts to investigate the age-related changes observed within the BM. Inflammaging is considered as a low-grade state of inflammation associated with aging, and whilst the possible mechanisms by which aging occurs are now largely understood, the processes leading to the underlying changes within aged BM remain elusive. The ability to identify these changes and detect such alterations at the genetic level are key to broadening the knowledgebase of aging BM. Next-generation sequencing (NGS) is an important molecular-level application presenting the ability to not only determine genomic base changes but provide transcriptional profiling (RNA-seq), as well as a high-throughput analysis of DNA–protein interactions (ChIP-seq). Utilising NGS to explore the genetic alterations occurring over the aging process within alterative cell types facilitates the comprehension of the molecular and cellular changes influencing the dynamics of aging BM. Thus, this review prospects the current landscape of BM aging and explores how NGS technology is currently being applied within this ever-expanding field of research.


Sign in / Sign up

Export Citation Format

Share Document