scholarly journals Combined Application of Citric Acid and Cr Resistant Microbes Improved Castor Bean Growth and Photosynthesis while it Alleviated Cr Toxicity by Reducing Cr+6 to Cr3+

2021 ◽  
Vol 9 (12) ◽  
pp. 2499
Author(s):  
Shafaqat Ali ◽  
Muhammad Waseem ◽  
Afzal Hussain ◽  
Muhammad Rizwan ◽  
Awais Ahmad ◽  
...  

Chromium is highly harmful to plants because of its detrimental effects on the availability of vital nutrients and secondary metabolites required for proper plant growth and development. A hydroponic experiment was carried out to analyze the effect of citric acid on castor bean plants under chromium stress. Furthermore, the role of two chromium-resistant microorganisms, Bacillus subtilis and Staphylococcus aureus, in reducing Cr toxicity was investigated. Different amounts of chromium (0 µM, 100 µM, 200 µM) and citric acid (0 mM, 2.5 mM, and 5 mM) were used both alone and in combination to analyze the remediation potential. Results showed that elevated amounts of chromium (specifically 200 µM) minimized the growth and biomass because the high concentration of Cr induced the oxidative markers. Exogenous citric acid treatment boosted plant growth and development by improving photosynthesis via enzymes such as superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase, which decreased Cr toxicity. The application of citric acid helped the plants to produce a high concentration of antioxidants which countered the oxidants produced due to chromium stress. It revealed that castor bean plants treated with citric acid could offset the stress injuries by decreasing the H2O2, electrolyte leakage, and malondialdehyde levels. The inoculation of plants with bacteria further boosted the plant growth parameters by improving photosynthesis and reducing the chromium-induced toxicity in the plants. The findings demonstrated that the combination of citric acid and metal-resistant bacteria could be a valuable technique for heavy metal remediation and mediating the adverse effects of metal toxicity on plants.

2015 ◽  
Vol 58 ◽  
pp. 61-70 ◽  
Author(s):  
Paul B. Larsen

Ethylene is the simplest unsaturated hydrocarbon, yet it has profound effects on plant growth and development, including many agriculturally important phenomena. Analysis of the mechanisms underlying ethylene biosynthesis and signalling have resulted in the elucidation of multistep mechanisms which at first glance appear simple, but in fact represent several levels of control to tightly regulate the level of production and response. Ethylene biosynthesis represents a two-step process that is regulated at both the transcriptional and post-translational levels, thus enabling plants to control the amount of ethylene produced with regard to promotion of responses such as climacteric flower senescence and fruit ripening. Ethylene production subsequently results in activation of the ethylene response, as ethylene accumulation will trigger the ethylene signalling pathway to activate ethylene-dependent transcription for promotion of the response and for resetting the pathway. A more detailed knowledge of the mechanisms underlying biosynthesis and the ethylene response will ultimately enable new approaches to be developed for control of the initiation and progression of ethylene-dependent developmental processes, many of which are of horticultural significance.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 508e-508
Author(s):  
Bin Liu ◽  
Royal D. Heins

A concept of ratio of radiant to thermal energy (RRT) has been developed to deal with the interactive effect of light and temperature on plant growth and development. This study further confirms that RRT is a useful parameter for plant growth, development, and quality control. Based on greenhouse experiments conducted with 27 treatment combinations of temperature, light, and plant spacing, a model for poinsettia plant growth and development was constructed using the computer program STELLA II. Results from the model simulation with different levels of daily light integral, temperature, and plant spacing showed that the RRT significantly affects leaf unfolding rate when RRT is lower than 0.025 mol/degree-day per plant. Plant dry weight is highly correlated with RRT; it increases linearly as RRT increases.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1311
Author(s):  
Magdalena Chmur ◽  
Andrzej Bajguz

Brassinolide (BL) represents brassinosteroids (BRs)—a group of phytohormones that are essential for plant growth and development. Brassinazole (Brz) is as a synthetic inhibitor of BRs’ biosynthesis. In the present study, the responses of Wolffia arrhiza to the treatment with BL, Brz, and the combination of BL with Brz were analyzed. The analysis of BRs and Brz was performed using LC-MS/MS. The photosynthetic pigments (chlorophylls, carotenes, and xanthophylls) levels were determined using HPLC, but protein and monosaccharides level using spectrophotometric methods. The obtained results indicated that BL and Brz influence W. arrhiza cultures in a concentration-dependent manner. The most stimulatory effects on the growth, level of BRs (BL, 24-epibrassinolide, 28-homobrassinolide, 28-norbrassinolide, catasterone, castasterone, 24-epicastasterone, typhasterol, and 6-deoxytyphasterol), and the content of pigments, protein, and monosaccharides, were observed in plants treated with 0.1 µM BL. Whereas the application of 1 µM and 10 µM Brz caused a significant decrease in duckweed weight and level of targeted compounds. Application of BL caused the mitigation of the Brz inhibitory effect and enhanced the BR level in duckweed treated with Brz. The level of BRs was reported for the first time in duckweed treated with BL and/or Brz.


Author(s):  
Yuki Nakamura ◽  
Anh H. Ngo

The article Non-specific phospholipase C (NPC): an emerging class of phospholipase C in plant growth and development, was originally published Online First without Open Access.


Sign in / Sign up

Export Citation Format

Share Document