scholarly journals Petrogenesis of Ultramafic Lamprophyres from the Terina Complex (Chadobets Upland, Russia): Mineralogy and Melt Inclusion Composition

Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 419 ◽  
Author(s):  
Ilya Prokopyev ◽  
Anastasiya Starikova ◽  
Anna Doroshkevich ◽  
Yazgul Nugumanova ◽  
Vladislav Potapov

The mineral composition and melt inclusions of ultramafic lamprophyres of the Terina complex were investigated. The rocks identified were aillikites, mela-aillikites, and damtjernites, and they were originally composed of olivine macrocrysts and phenocrysts, as well as phlogopite phenocrysts in carbonate groundmass, containing phlogopite, clinopyroxene and feldspars. Minor and accessory minerals were fluorapatite, ilmenite, rutile, titanite, and sulphides. Secondary minerals identified were quartz, calcite, dolomite, serpentine, chlorite, rutile, barite, synchysite-(Ce), and monazite-(Ce). Phlogopite, calcite, clinopyroxene, Ca-amphibole, fluorapatite, magnetite, and ilmenite occurred as daughter-phases in melt inclusions. The melt inclusions also contained Fe–Ni sulphides, synchysite-(Ce) and, probably, anhydrite. The olivine macrocrysts included orthopyroxene and ilmenite, and the olivine phenocrysts included Cr-spinel and Ti-magnetite inclusions. Crystal-fluid inclusions in fluorapatite from damtjernites contain calcite, clinopyroxene, dolomite, and barite. The data that were obtained confirm that the ultramafic lamprophyres of the Terina complex crystallized from peridotite mantle-derived carbonated melts and they have not undergone significant fractional crystallization. The investigated rocks are considered to be representative of melts that are derived from carbonate-rich mantle beneath the Siberian craton.

2006 ◽  
Vol 70 (6) ◽  
pp. 669-687 ◽  
Author(s):  
Khin Zaw ◽  
F. L. Sutherland ◽  
F. Dellapasqua ◽  
C. G. Ryan ◽  
Tzen-Fu Yui ◽  
...  

AbstractCorundum xenocrysts from alkaline basalt fields differ in characteristics and hence lithospheric origins. Trace element, fluid/melt inclusion and oxygen isotope studies on two eastern Australian corundum deposits are compared to consider their origins. Sapphires from Weldborough, NE Tasmania, are magmatic (high-Ga, av. 200 ppm) and dominated by Fe (av. 3300 ppm) and variable Ti (av. 400 ppm) as chromophores. They contain Cl, Fe, Ga, Ti and CO2-rich fluid inclusions and give δ18O values (5.1–6.2‰) of mantle range. Geochronology on companion zircons suggests several sources (from 290 Ma to 47 Ma) were disrupted by basaltic melts (47 ± 0.6 Ma). Gem corundums from Barrington, New South Wales, also include magmatic sapphires (Ga av. 170 ppm; δ18O (4.6–5.8‰), but with more Fe (av. 9000 ppm) and less Ti (av. 300 ppm) as chromophores. Zircon dating suggests that gem formation preceded and was overlapped by Cenozoic basaltic melt generation (59–4 Ma). In contrast, a metamorphic sapphire-ruby suite (low-Ga, av. 30 ppm) here incorporates greater Cr into the chromophores (up to 2250 ppm). Fluid inclusions are CO2-poor, but melt inclusions suggest some alkaline melt interaction. The δ18O values (5.1–6.2‰) overlap magmatic sapphire values. Interactions at contact zones (T = 780–940°C) between earlier Permian ultramafic bodies and later alkaline fluid activity may explain the formation of rubies.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 556
Author(s):  
Mikhail Nikolaevich Kruk ◽  
Anna Gennadievna Doroshkevich ◽  
Ilya Romanovich Prokopyev ◽  
Ivan Aleksandrovich Izbrodin

The Arbarastakh ultramafic carbonatite complex is located in the southwestern part of the Siberian Craton and contains ore-bearing carbonatites and phoscorites with Zr-Nb-REE mineralization. Based on the modal composition, textural features, and chemical compositions of minerals, the phoscorites from Arbarastakh can be subdivided into two groups: FOS 1 and FOS 2. FOS 1 contains the primary minerals olivine, magnetite with isomorphic Ti impurities, phlogopite replaced by tetraferriphlogopite along the rims, and apatite poorly enriched in REE. Baddeleyite predominates among the accessory minerals in FOS 1. Zirconolite enriched with REE and Nb and pyrochlore are found in smaller quantities. FOS 2 has a similar mineral composition but contains much less olivine, magnetite is enriched in Mg, and the phlogopite is enriched in Ba and Al. Of the accessory minerals, pyrochlore predominates and is enriched in Ta, Th, and U; baddeleyite is subordinate and enriched in Nb. Chemical and textural differences suggest that the phoscorites were formed by the sequential introduction of different portions of the melt. The melt that formed the FOS 1 was enriched in Zr and REE relative to the FOS 2 melt; the melt that formed the FOS 2 was enriched in Al, Ba, Nb, Ta, Th, U, and, to a lesser extent, Sr.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 725
Author(s):  
Ludmila B. Damdinova ◽  
Bulat B. Damdinov

This article discusses the peculiarities of mineral composition and a fluid inclusions (FIs further in the text) study of the Kholtoson W and Inkur W deposits located within the Dzhida W-Mo ore field (Southwestern Transbaikalia, Russia). The Mo mineralization spatially coincides with the apical part of the Pervomaisky stock (Pervomaisky deposit), and the W mineralization forms numerous quartz veins in the western part of the ore field (Kholtoson vein deposit) and the stockwork in the central part (Inkur stockwork deposit). The ore mineral composition is similar at both deposits. Quartz is the main gangue mineral; there are also present muscovite, K-feldspar, and carbonates. The main ore mineral of both deposits is hubnerite. In addition to hubnerite, at both deposits, more than 20 mineral species were identified; they include sulfides (pyrite, chalcopyrite, galena, sphalerite, bornite, etc.), sulfosalts (tetrahedrite, aikinite, stannite, etc.), oxides (scheelite, cassiterite), and tellurides (hessite). The results of mineralogical and fluid inclusions studies allowed us to conclude that the Inkur W and the Kholtoson W deposits were formed by the same hydrothermal fluids, related to the same ore-forming system. For both deposits, the fluid inclusion homogenization temperatures varied within the range ~195–344 °C. The presence of cogenetic liquid- and vapor-dominated inclusions in the quartz from the ores of the Kholtoson deposit allowed us to estimate the true temperature range of mineral formation as 413–350 °C. Ore deposition occurred under similar physical-chemical conditions, differing only in pressures of mineral formation. The main factors of hubnerite deposition from hydrothermal fluids were decreases in temperature.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ivan F. Chayka ◽  
Vadim S. Kamenetsky ◽  
Nikolay V. Vladykin ◽  
Alkiviadis Kontonikas-Charos ◽  
Ilya R. Prokopyev ◽  
...  

AbstractThe discrepancy between Na-rich compositions of modern carbonatitic lavas (Oldoinyo Lengai volcano) and alkali-poor ancient carbonatites remains a topical problem in petrology. Although both are supposedly considered to originate via fractional crystallization of a “common parent” alkali-bearing Ca-carbonatitic magma, there is a significant compositional gap between the Oldoinyo Lengai carbonatites and all other natural compositions reported (including melt inclusions in carbonatitic minerals). In an attempt to resolve this, we investigate the petrogenesis of Ca-carbonatites from two occurrences (Guli, Northern Siberia and Tagna, Southern Siberia), focusing on mineral textures and alkali-rich multiphase primary inclusions hosted within apatite and magnetite. Apatite-hosted inclusions are interpreted as trapped melts at an early magmatic stage, whereas inclusions in magnetite represent proxies for the intercumulus environment. Melts obtained by heating and quenching the inclusions, show a progressive increase in alkali concentrations transitioning from moderately alkaline Ca-carbonatites through to the “calcite CaCO3 + melt = nyerereite (Na,K)2Ca2(CO3)3” peritectic, and finally towards Oldoinyo Lengai lava compositions. These results give novel empirical evidence supporting the view that Na-carbonatitic melts, similar to those of the Oldoinyo Lengai, may form via fractionation of a moderately alkaline Ca-carbonatitic melt, and therefore provide the “missing piece” in the puzzle of the Na-carbonatite’s origin. In addition, we conclude that the compositions of the Guli and Tagna carbonatites had alkali-rich primary magmatic compositions, but were subsequently altered by replacement of alkaline assemblages by calcite and dolomite.


2021 ◽  
Author(s):  
Corin Jorgenson ◽  
Luca Caricchi ◽  
Michael Stueckelberger ◽  
Giovanni Fevola ◽  
Gregor Weber

<p>Melt inclusions provide a window into the inner workings of magmatic systems. Both mineral chemistry and volatile distributions within melt inclusions can provide valuable information about the processes modulating magma ascent and preceding volcanic eruptions. Many melt inclusions host vapour bubbles which can be rich in CO<sub>2</sub> and H<sub>2</sub>O and must be taken into consideration when assessing the volatile budget of magmatic reservoirs. These vapour bubbles can be the product of differential volumetric contraction between the melt inclusion and host phase during an eruption or indicate an excess fluid phase in the magma reservoir. Thus, determining the distribution of volatiles between melt and vapour bubbles is integral to our fundamental understanding of melt inclusions, and by extension the evolution of volatiles within magmatic systems.</p><p>A large dataset of 79 high-resolution tomographic scans of clinopyroxene and leucite phenocrysts from the Colli Albani Caldera Complex (Italy) was recently acquired at the German Electron Synchrotron (DESY). These tomograms allow us to quantify the volume of melt inclusions and associated vapour bubble both glassy and microcrystalline melt inclusions. Notably, in the glassy melt inclusions the vapour bubbles exist either as a single large vapour bubble in the middle of the melt inclusion or as several smaller vapour bubbles distributed around the edge of the melt inclusion. These two types of melt inclusions can coexist within a single crystal. We suggest that the occurrence of these rim- bubbles is caused by one of two exsolution pathways, either pre-entrapment and bubble migration or post entrapment with preferential exsolution at the rims. By combining the analysis of hundreds of melt inclusions with the chemistry of the host phase we aim to unveil magma ascent rates and distribution of excess fluids within the magmatic system of Colli Albani, which produced several mafic-alkaline large volume ignimbrites.</p>


Geology ◽  
2020 ◽  
Vol 48 (5) ◽  
pp. 504-508 ◽  
Author(s):  
Simon J. Barker ◽  
Michael C. Rowe ◽  
Colin J.N. Wilson ◽  
John A. Gamble ◽  
Shane M. Rooyakkers ◽  
...  

Abstract Understanding the origins of the mantle melts that drive voluminous silicic volcanism is challenging because primitive magmas are generally trapped at depth. The central Taupō Volcanic Zone (TVZ; New Zealand) hosts an extraordinarily productive region of rhyolitic caldera volcanism. Accompanying and interspersed with the rhyolitic products, there are traces of basalt to andesite preserved as enclaves or pyroclasts in caldera eruption products and occurring as small monogenetic eruptive centers between calderas. These mafic materials contain MgO-rich olivines (Fo79–86) that host melt inclusions capturing the most primitive basaltic melts fueling the central TVZ. Olivine-hosted melt inclusion compositions associated with the caldera volcanoes (intracaldera samples) contrast with those from the nearby, mafic intercaldera monogenetic centers. Intracaldera melt inclusions from the modern caldera volcanoes of Taupō and Okataina have lower abundances of incompatible elements, reflecting distinct mantle melts. There is a direct link showing that caldera-related silicic volcanism is fueled by basaltic magmas that have resulted from higher degrees of partial melting of a more depleted mantle source, along with distinct subduction signatures. The locations and vigor of Taupō and Okataina are fundamentally related to the degree of melting and flux of basalt from the mantle, and intercaldera mafic eruptive products are thus not representative of the feeder magmas for the caldera volcanoes. Inherited olivines and their melt inclusions provide a unique “window” into the mantle dynamics that drive the active TVZ silicic magmatic systems and may present a useful approach at other volcanoes that show evidence for mafic recharge.


2007 ◽  
Vol 237 (3-4) ◽  
pp. 233-235 ◽  
Author(s):  
Maria Luce Frezzotti ◽  
Alfons M. van den Kerkhof

2020 ◽  
Vol 105 (8) ◽  
pp. 1270-1274
Author(s):  
Francis M. McCubbin ◽  
Jessica J. Barnes

Abstract We conducted in situ Cl isotopic measurements of apatite within intercumulus regions and within a holocrystalline olivine-hosted melt inclusion in magnesian-suite troctolite 76535 from Apollo 17. These data were collected to place constraints on the Cl-isotopic composition of the last liquid to crystallize from the lunar magma ocean (i.e., urKREEP, named after its enrichments in incompatible lithophile trace elements like potassium, rare earth elements, and phosphorus). The apatite in the olivine-hosted melt inclusion and within the intercumulus regions of the sample yielded Cl-isotopic compositions of 28.3 ± 0.9‰ (2σ) and 30.3 ± 1.1‰ (2σ), respectively. The concordance of these values from both textural regimes we analyzed indicates that the Cl-isotopic composition of apatites in 76535 likely represents the Cl-isotopic composition of the KREEP-rich magnesian-suite magmas. Based on the age of 76535, these results imply that the KREEP reservoir attained a Cl-isotopic composition of 28–30‰ by at least 4.31 Ga, consistent with the onset of Cl-isotopic fractionation at the time of lunar magma ocean crystallization or shortly thereafter. Moreover, lunar samples that yield Cl-isotopic compositions higher than the value for KREEP are likely affected by secondary processes such as impacts and/or magmatic degassing. The presence of KREEP-rich olivine-hosted melt inclusions within one of the most pristine and ancient KREEP-rich rocks from the Moon provides a new opportunity to characterize the geochemistry of KREEP. In particular, a broader analysis of stable isotopic compositions of highly and moderately volatile elements could provide an unprecedented advancement in our characterization of the geochemical composition of the KREEP reservoir and of volatile-depletion processes during magma ocean crystallization, more broadly.


Sign in / Sign up

Export Citation Format

Share Document