scholarly journals Genesis of Dulong Sn-Zn-In Polymetallic Deposit in Yunnan Province, South China: Insights from Cassiterite U-Pb Ages and Trace Element Compositions

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 199
Author(s):  
Shiyu Liu ◽  
Yuping Liu ◽  
Lin Ye ◽  
Chen Wei ◽  
Yi Cai ◽  
...  

The Dulong Sn-Zn-In polymetallic deposit in the Yunnan province, SW China, hosts a reserve of 5.0 Mt Zn, 0.4 Mt Sn, and 7 Kt In. It is one of the most important polymetallic tin ore districts in China. Granites at Dulong mining area include mainly the Laojunshan granite (third phase), which occurs as quartz porphyry or granite porphyry dikes in the Southern edge of the Laojunshan intrusive complex. Granites of phases one and two are intersected at drill holes at depth. There are three types of cassiterite mineralization developed in the deposit: cassiterite-magnetite ± sulfide ore (Cst I), cassiterite-sulfide ore (Cst II) within the proximal skarn in contact with the concealed granite (granites of phases one to two and three), and cassiterite-quartz vein ore (Cst III) near porphyritic granite. Field geology and petrographic studies indicate that acid neutralising muscovitization and pyroxene reactions were part of mechanisms for Sn precipitation resulting from fluid-rock interaction. In situ U–Pb dating of cassiterite samples from the ore stages of cassiterite-sulfide (Cst II) and Cassiterite-quartz vein (Cst III) yielded Tera-Wasserburg U–Pb lower intercept ages of 88.5 ± 2.1 Ma and 82.1 ± 6.3 Ma, respectively. The two mineralization ages are consistent with the emplacement age of the Laojunshan granite (75.9–92.9 Ma) within error, suggesting a close temporal link between Sn-Zn(-In) mineralization and granitic magmatism. LA-ICPMS trace element study of cassiterite indicates that tetravalent elements (such as Zr, Hf, Ti, U, W) are incorporated in cassiterite by direct substitution, and the trivalent element (Fe) is replaced by coupled substitution. CL image shows that the fluorescence signal of Cst I–II is greater than that of Cst III, which is caused by differences in contents of activating luminescence elements (Al, Ti, W, etc.) and quenching luminescence element (Fe). Elevated W and Fe but lowered Zr, Hf, Nb, and Ta concentrations of the three type cassiterites from the Dulong Sn-Zn-In polymetallic deposit are distinctly different from those of cassiterites in VMS/SEDEX tin deposits, but similar to those from granite-related tin deposits. From cassiterite-magnetite ± sulfide (Cst I), cassiterite-sulfide ore (Cst II), to cassiterite-quartz vein ore-stage (Cst III), high field strength elements (HFSEs: Zr, Nb, Ta, Hf) decrease. This fact combined with cassiterite crystallization ages, indicates that Cst I–II mainly related to concealed granite (Laojunshan granites of phases one and two) while Cst III is mainly related to porphyritic granite (Laojunshan granites of phase three).

2020 ◽  
Vol 105 (11) ◽  
pp. 1712-1723
Author(s):  
Yu Zhang ◽  
Pete Hollings ◽  
Yongjun Shao ◽  
Dengfeng Li ◽  
Huayong Chen ◽  
...  

Abstract The origin of stratabound deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt (MLYRB), Eastern China, is the subject of considerable debate. The Xinqiao Cu-Fe-Au deposit in the Tongling ore district is a typical stratabound ore body characterized by multi-stage magnetite. A total of six generations of magnetite have been identified. Mt1 is commonly replaced by porous Mt2, and both are commonly trapped in the core of Mt3, which is characterized by both core-rim textures and oscillatory zoning. Porous Mt4 commonly truncates the oscillatory zoning of Mt3, and Mt5 is characterized by 120° triple junction texture. Mt1 to Mt5 are commonly replaced by pyrite that coexists with quartz, whereas Mt6, with a fine-grained foliated and needle-like texture, commonly cuts the early pyrite as veins and is replaced by pyrite that coexists with calcite. The geochemistry of the magnetite suggests that they are hydrothermal in origin. The microporosity of Mt2 and Mt4 magnetite, their sharp contacts with Mt1 and Mt3, and lower trace-element contents (e.g., Si, Ca, Mg, and Ti) than Mt1 and Mt3 suggest that they formed via coupled dissolution and reprecipitation of the precursor Mt1 and Mt3 magnetite, respectively. This was likely caused by high-salinity fluids derived from intensive water-rock interaction between the magmatic-hydrothermal fluids associated with the Jitou stock and Late Permian metalliferous black shales. The 120° triple junction texture of Mt5 suggests it is the result of fluid-assisted recrystallization, whereas Mt6 formed by replacement of hematite as a result of fracturing. The geochemistry of the magnetite suggests that the temperature increased from Mt2 to Mt3 and implies that there were multiple pulses of fluids from a magmatic-hydrothermal system. Therefore, we propose that the Xinqiao stratiform mineralization was genetically associated with multiple influxes of magmatic hydrothermal fluids derived from the Early Cretaceous Jitou stock. This study demonstrates that detailed texture examination and in situ trace-elements analysis under robust geological and petrographic frameworks can effectively constrain the mineralization processes and ore genesis.


Author(s):  
Wenqing Huang ◽  
Pei Ni ◽  
Ting Shui ◽  
Junyi Pan ◽  
Mingsen Fan ◽  
...  

Abstract Primary rubies in the Ailao Shan of Yunnan Province, China, are found in three layers of marble. However, the origin and source rocks of placer rubies in the Yuanjiang area remains unclear. Trace element geochemistry and inclusion mineralogy within these materials can provide information on their petrogenesis and original source. Zircon, rutile, mica group minerals, titanite, and apatite group minerals were the main solid inclusions identified within the placer Yuanjiang rubies, along with other mineral inclusions such as pyrite, pyrrhotite, plagioclase group minerals, and scapolite group minerals. Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) measurements showed that the placer rubies are characterized by average values of Mg (31 ppmw), Ti (97 ppmw), V (77 ppmw), Cr (3326 ppmw), Fe (71 ppmw), and Ga (66ppmw). A trace-element oxide diagram, Fe values (<350 ppmw), and the mineral inclusion assemblage suggest marble sources for the placer ruby. Therefore, the Yuanjiang rubies (both primary and placer) are metamorphic, and this fits well with the observations that skarn and related minerals are mostly absent in this deposit. Yuanjiang rubies can be readily separated from the high-iron rubies of different geological types by their Fe content (<1000 ppmw). The discriminators Mg, Ga, Cr, V, Fe, and Ti have potential in separating Yuanjiang rubies from some other marble-hosted deposits, such as Snezhnoe. Nevertheless, geographic origin determination remains a challenge when considering the similarities in compositional features between the Yuanjiang rubies and rubies from some other marble-hosted deposits worldwide (e.g., Luc Yen). The presence of kaolinite group minerals and clusters of euhedral, prismatic zircon crystals in ruby suggest a Yuanjiang origin.


2004 ◽  
Vol 22 (5) ◽  
pp. 443-457 ◽  
Author(s):  
F. C. Schröter ◽  
J. A. Stevenson ◽  
N. R. Daczko ◽  
G. L. Clarke ◽  
N. J. Pearson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document