scholarly journals Experimental Uncertainty Analysis for the Particle Size Distribution for Better Understanding of Batch Grinding Process

Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 862
Author(s):  
José Delgado ◽  
Freddy A. Lucay ◽  
Felipe D. Sepúlveda

Uncertainty in industrial processes is very common, but it is particularly high in the grinding process (GP), due to the set of interacting operating/design parameters. This uncertainty can be evaluated in different ways, but, without a doubt, one of the most important parameters that characterise all GPs is the particle size distribution (PSD). However, is the PSD a good way to quantify the uncertainty in the milling process? This is the question we attempt to answer in this paper. To do so, we use 10 experimental grinding repetitions, 3 grinding times, and 14 Tyler meshes (more than 400 experimental results). The most relevant results were compared for the weight percentage for each size (WPES), cumulative weight undersize (CWU), or the use of particle size distribution models (PSDM), in terms of continuous changes in statistical parameters in WPES for different grinding times. The probability distribution was found to be changeable when reporting the results of WPES/CWU/PSDM, we detected the over-/under-estimation of uncertainty when using WPES/CWU, and variations in the relationships between sizes were observed when using WPES/CWU. Finally, our conclusion was that the way in which the data are analysed is not trivial, due to the possible deviations that may occur in the uncertainty process.

1986 ◽  
Vol 85 ◽  
Author(s):  
P. W. Brown ◽  
K. G. Galuk

ABSTRACTA model has been developed to describe a granule of unground clinker, to simulate the grinding process by the removal of particles according to a user-defined particle size distribution, and to characterize the exposed surface areas and volumes of each clinker phase present. The composition of the clinker granule and the distribution of phases within the granule are also user defined.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 882
Author(s):  
Alfredo L. Coello-Velázquez ◽  
Víctor Quijano Arteaga ◽  
Juan M. Menéndez-Aguado ◽  
Francisco M. Pole ◽  
Luis Llorente

Mathematical models of particle size distribution (PSD) are necessary in the modelling and simulation of comminution circuits. In order to evaluate the application of the Swebrec PSD model (SWEF) in the grinding circuit at the Punta Gorda Ni-Co plant, a sampling campaign was carried out with variations in the operating parameters. Subsequently, the fitting of the data to the Gates-Gaudin-Schumann (GGS), Rosin-Rammler (RRS) and SWEF PSD functions was evaluated under statistical criteria. The fitting of the evaluated distribution models showed that these functions are characterized as being sufficiently accurate, as the estimation error does not exceed 3.0% in any of the cases. In the particular case of the Swebrec function, reproducibility for all the products is high. Furthermore, its estimation error does not exceed 2.7% in any of the cases, with a correlation coefficient of the ratio between experimental and simulated data greater than 0.99.


2021 ◽  
pp. 4-4
Author(s):  
Nemanja Bojanic ◽  
Aleksandar Fistes ◽  
Tatjana Dosenovic ◽  
Aleksandar Takaci ◽  
Mirjana Brdar ◽  
...  

A method based on the reverse breakage matrix approach is proposed for controlling the effects that milling has on the particle size distribution and composition of the comminuted material. Applicability, possibilities, and limitations of the proposed method are tested on examples related to the process of wheat flour milling. It has been shown that the reverse matrix approach can be successfully used for defining the particle size distribution of the input material leading to the desired, predetermined particle size and compositional distribution in the output material. Moreover, we have illustrated that it is possible to simultaneously control both, input and output particle size distribution, together with the composition of the output material.


2017 ◽  
Vol 54 (7) ◽  
pp. 483-486
Author(s):  
Fumiaki Sato ◽  
Hideyuki Ikeda ◽  
Michio Osumi ◽  
Yasuyuki Fujita ◽  
Isamu Minami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document