scholarly journals Quantitative X-ray Maps Analaysis of Composition and Microstructure of Permian High-Temperature Relicts in Acidic Rocks from the Sesia-Lanzo Zone Eclogitic Continental Crust, Western Alps

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1421
Author(s):  
Michele Zucali ◽  
Luca Corti ◽  
Manuel Roda ◽  
Gaetano Ortolano ◽  
Roberto Visalli ◽  
...  

Three samples of meta-acidic rocks with pre-Alpine metamorphic relicts from the Sesia-Lanzo Zone eclogitic continental crust were investigated using stepwise controlled elemental maps by means of the Quantitative X-ray Maps Analyzer (Q-XRMA). Samples were chosen with the aim of analysing the reacting zones along the boundaries between the pre-Alpine and Alpine mineral phases, which developed in low chemically reactive systems. The quantitative data treatment of the X-ray images was based on a former multivariate statistical analytical stage followed by a sequential phase and sub-phase classification and permitted to isolate and to quantitatively investigate the local paragenetic equilibria. The parageneses thus observed were interpreted as related to the pre-Alpine metamorphic or magmatic stages as well as to local Alpine re-equilibrations. On the basis of electron microprobe analysis, specific compositional ranges were defined in micro-domains of the relict and new paragenetic equilibria. In this way calibrated compositional maps were obtained and used to contour different types of reacting boundaries between adjacent solid solution phases. The pre-Alpine and Alpine mineral parageneses thus obtained allowed to perform geothermobarometry on a statistically meaningful and reliable dataset. In general, metamorphic temperatures cluster at 600–700 ∘C and 450–550 ∘C, with lower temperatures referred to a retrograde metamorphic re-equilibration. In all the cases described, pre-Alpine parageneses were overprinted by an Alpine metamorphic mineral assemblage. Pressure-temperature estimates of the Alpine stage averagely range between 420 to 550 ∘C and 12 to 16.5 kbar. The PT constraints permitted to better define the pre-Alpine metamorphic scenario of the western Austroalpine sectors, as well as to better understand the influence of the pre-Alpine metamorphic inheritance on the forthcoming Alpine tectonic evolution.

Author(s):  
T. Yaguchi ◽  
M. Konno ◽  
T. Kamino ◽  
M. Ogasawara ◽  
K. Kaji ◽  
...  

Abstract A technique for preparation of a pillar shaped sample and its multi-directional observation of the sample using a focused ion beam (FIB) / scanning transmission electron microscopy (STEM) system has been developed. The system employs an FIB/STEM compatible sample rotation holder with a specially designed rotation mechanism, which allows the sample to be rotated 360 degrees [1-3]. This technique was used for the three dimensional (3D) elemental mapping of a contact plug of a Si device in 90 nm technology. A specimen containing a contact plug was shaped to a pillar sample with a cross section of 200 nm x 200 nm and a 5 um length. Elemental analysis was performed with a 200 kV HD-2300 STEM equipped with the EDAX genesis Energy dispersive X-ray spectroscopy (EDX) system. Spectrum imaging combined with multivariate statistical analysis (MSA) [4, 5] was used to enhance the weak X-ray signals of the doped area, which contain a low concentration of As-K. The distributions of elements, especially the dopant As, were successfully enhanced by MSA. The elemental maps were .. reconstructed from the maps.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Elias Hanna Bakraji ◽  
Rana Abboud ◽  
Haissm Issa

Thermoluminescence (TL) dating and multivariate statistical methods based on radioisotope X-ray fluorescence analysis have been utilized to date and classify Syrian archaeological ceramics fragment from Tel Jamous site. 54 samples were analyzed by radioisotope X-ray fluorescence; 51 of them come from Tel Jamous archaeological site in Sahel Akkar region, Syria, which fairly represent ceramics belonging to the Middle Bronze Age (2150 to 1600 B.C.) and the remaining three samples come from Mar-Takla archaeological site fairly representative of the Byzantine ceramics. We have selected four fragments from Tel Jamous site to determinate their age using thermoluminescence (TL) method; the results revealed that the date assigned by archaeologists was good. An annular 109Cd radioactive source was used to irradiate the samples in order to determine their chemical composition and the results were treated statistically using two methods, cluster and factor analysis. This treatment revealed two main groups; the first one contains only the three samples M52, M53, and M54 from Mar-Takla site, and the second one contains samples that belong to Tel Jamous site (local).


2021 ◽  
Vol 114 (1) ◽  
Author(s):  
Manuel Roda ◽  
Michele Zucali ◽  
Luca Corti ◽  
Roberto Visalli ◽  
Gaetano Ortolano ◽  
...  

AbstractThe Rocca Canavese Thrust Sheets Unit (RCTU) is a subduction-related mélange that represents the eastern-most complex of the Sesia–Lanzo Zone (SLZ), bounded by the Periadriatic (Canavese) Lineament that separates the Alpine subduction complex from the Southalpine domain. The RCTU is limited to the south by the Lanzo Massif (LM) and to the east by the Eclogitic Micaschists Complex (EMC). Particularly the tectonic contact area of the RCTU, adjacent to the neighbouring SLZ and the LM is characterised by a 100–200-m-thick mylonitic to ultra-mylonitic zone (MZ) that was active under blueschist-to greenschist-facies conditions. Despite the dominant mylonitic structure, some rocks (garnet-bearing gneiss, garnet-free gneiss and orthogneiss) still preserve pre-mylonitic parageneses in meter-sized domains. The scarcity of superposed structures and the small size of relicts impose a detailed microstructural analysis supported by chemical investigation to reconstruct the tectono-metamorphic history of the MZ. Therefore, we integrated the classical meso- and microstructural analysis approach with a novel quantitative technique based on the Quantitative X-Ray Map Analyzer (Q-XRMA), used to classify rock-forming minerals starting from an array of X-ray elemental maps, both at whole thin section and micro-domain scale, as well as to calibrate the maps for pixel-based chemical analysis and end-member component maps, relevant for a more robust conventional geothermobarometer application as well for calculating reliable PT pseudosections. Pre-Alpine relicts are garnet and white mica porphyroclasts in the garnet-bearing gneiss and biotite and K-feldspar porphyroclasts in garnet-free gneiss and orthogneiss, respectively, providing no PT constraints. The Alpine evolution of the MZ rocks, has been subdivided in three deformation and metamorphic stages. The first Alpine structural and metamorphic equilibration stage (D1 event) occurred at a pressure of ca. 1.25–1.4 GPa and at a temperature of ca. 420–510 °C, i.e. under blueschist-facies conditions. The D2 event, characterised by a mylonitic foliation that is pervasive in the MZ, occurred at ca. 0.95–1.1 GPa and ca. 380–500 °C, i.e. under epidote-blueschist-facies conditions. The D2 PT conditions in the MZ rocks are similar to those predicted for the blocks that constitute the RCTU mélange, and they overlap with the exhumation paths of the EMC and LM units. Therefore, the RCTU, EMC and LM rocks became coupled together during the D2 event. This coupling occurred during the exhumation of the different tectono-metamorphic units belonging to both continental and oceanic lithosphere and under a relatively cold thermal regime, typical for an active oceanic subduction zone, pre-dating Alpine continental collision.


Author(s):  
Mark Hall

This chapter reviews the physics and engineering behind X-ray fluorescence (XRF) spectrometry. Explained are the two different types of XRF spectrometry, their similarities and differences, and their limitations. Sample preparation for each type of XRF spectrometry is discussed. Since both methods of XRF spectrometry produce quantitative data, a short discussion of data processing and multivariate statistical methods is presented. After reviewing some of the theoretical approaches towards material culture and chemical characterization, the utility of XRF spectrometry to provenance studies of ceramics is illustrated. Some case studies are briefly reviewed that illustrate the utility of the data obtained from XRF spectrometry, answering broader anthropological and archaeological questions.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Chunjie Wang ◽  
Aihua Zhang ◽  
Hamid Reza Karimi

NanosizedCeO2powders were synthesized via hydrothermal method with different types of surfactants (polyethylene glycol (PEG), cetyltrimethylammonium bromide (CTAB), and sodium dodecylbenzenesulfonate (SDBS)). X-ray diffraction, Raman spectroscopy, and transmission electron microscopy were utilized to characterize the phase structures and morphologies of the products. The sample with CTAB as surfactant (CeO2-C) has the largest specific surface area and the smallest particle size among these three samples. The humidity sensor fabricated byCeO2-C shows higher performance than those usedCeO2-P andCeO2-S. The impedance of theCeO2-C sensor decreases by about five orders of magnitude with relative humidity (RH) changing from 15.7 to 95%. The response and recovery time are 7 and 7 s, respectively. These results indicate that the performance ofCeO2humidity sensors can be improved effectively by the addition of cationic surfactant.


Author(s):  
K. A. Brookes ◽  
D. Finbow ◽  
Madeleine Samuel

Investigation of the particulate matter contained in the water sample, revealed the presence of a number of different types and certain of these were selected for analysis.An A.E.I. Corinth electron microscope was modified to accept a Kevex Si (Li) detector. To allow for existing instruments to be readily modified, this was kept to a minimum. An additional port is machined in the specimen region to accept the detector, with the liquid nitrogen cooling dewar conveniently housed in the left hand cupboard adjacent to the microscope column. Since background radiation leads to loss in the sensitivity of the instrument, great care has been taken to reduce this effect by screening and manufacturing components that are near the specimen from material of low atomic number. To change from normal transmission imaging to X-ray analysis, the special 4-position specimen rod is inserted through the normal specimen airlock.


Author(s):  
P. Ingram

It is well established that unique physiological information can be obtained by rapidly freezing cells in various functional states and analyzing the cell element content and distribution by electron probe x-ray microanalysis. (The other techniques of microanalysis that are amenable to imaging, such as electron energy loss spectroscopy, secondary ion mass spectroscopy, particle induced x-ray emission etc., are not addressed in this tutorial.) However, the usual processes of data acquisition are labor intensive and lengthy, requiring that x-ray counts be collected from individually selected regions of each cell in question and that data analysis be performed subsequent to data collection. A judicious combination of quantitative elemental maps and static raster probes adds not only an additional overall perception of what is occurring during a particular biological manipulation or event, but substantially increases data productivity. Recent advances in microcomputer instrumentation and software have made readily feasible the acquisition and processing of digital quantitative x-ray maps of one to several cells.


Author(s):  
Karen A. Katrinak ◽  
James R. Anderson ◽  
Peter R. Buseck

Aerosol samples were collected in Phoenix, Arizona on eleven dates between July 1989 and April 1990. Elemental compositions were determined for approximately 1000 particles per sample using an electron microprobe with an energy-dispersive x-ray spectrometer. Fine-fraction samples (particle cut size of 1 to 2 μm) were analyzed for each date; coarse-fraction samples were also analyzed for four of the dates.The data were reduced using multivariate statistical methods. Cluster analysis was first used to define 35 particle types. 81% of all fine-fraction particles and 84% of the coarse-fraction particles were assigned to these types, which include mineral, metal-rich, sulfur-rich, and salt categories. "Zero-count" particles, consisting entirely of elements lighter than Na, constitute an additional category and dominate the fine fraction, reflecting the importance of anthropogenic air pollutants such as those emitted by motor vehicles. Si- and Ca-rich mineral particles dominate the coarse fraction and are also numerous in the fine fraction.


Sign in / Sign up

Export Citation Format

Share Document