scholarly journals LKZ-1: A New Zircon Working Standard for the In Situ Determination of U–Pb Age, O–Hf Isotopes, and Trace Element Composition

Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 325 ◽  
Author(s):  
Albert Chang-sik Cheong ◽  
Youn-Joong Jeong ◽  
Shinae Lee ◽  
Keewook Yi ◽  
Hui Je Jo ◽  
...  

This study introduces a new zircon reference material, LKZ-1, for the in situ U–Pb dating and O–Hf isotopic and trace element analyses. The secondary ion mass spectrometric analyses for this gem-quality single-crystal zircon yielded a weighted mean 206Pb/238U age of 572.6 ± 2.0 Ma (2σ, n = 22, MSWD = 0.90), with moderately high U concentrations (619 ± 21 ppm, 1 SD), restricted Th/U ratios (0.146 ± 0.002, 1 SD), and negligible common Pb content (206Pbc < 0.2%). A comparable 206Pb/238U age (570.0 ± 2.5 Ma, 2σ) was produced by the isotope dilution-thermal ionization mass spectrometry. The secondary ion mass spectrometric and laser ablation-assisted multiple collector inductively coupled plasma mass spectrometer analyses respectively showed that LKZ-1 had little variation in O (δ18OV-SMOW = 10.65 ± 0.14‰; laser fluorination value = 10.72 ± 0.02‰; 1 SD) and Hf (176Hf/177Hf = 0.281794 ± 0.000016, 1 SD) isotopic compositions. LKZ-1 was also fairly homogeneous in its chemical composition (RSD of laser ablation ICPMS data ≤ 10%), displaying a relatively uniform chondrite-normalized rare earth element pattern ((Lu/Gd)N = 31 ± 3, Eu/Eu* = 0.43 ± 0.17, Ce/Ce* = 44 ± 32; 1 SD). These consistencies suggest that the LKZ-1 zircon is a suitable working standard for geochronological and geochemical analyses.

Geology ◽  
2021 ◽  
Author(s):  
Darwinaji Subarkah ◽  
Morgan L. Blades ◽  
Alan S. Collins ◽  
Juraj Farkaš ◽  
Sarah Gilbert ◽  
...  

Authigenic components in marine sediments are important archives for past environment reconstructions. However, defining reliable age constraints and assessing the effects of post-depositional overprints in Precambrian sequences are challenging. We demonstrate a new laser-based analytical approach that has the potential to rapidly and accurately evaluate the depositional and alteration histories of Proterozoic shales. Our study employs a novel application of in situ Rb-Sr dating coupled with simultaneous trace-element analysis using reaction-cell laser ablation–inductively coupled plasma–tandem mass spectrometry (LA-ICPMS/MS). We present results from shales sourced from two wells in the Proterozoic McArthur Basin, northern Australia. These rocks have been widely used by previous studies as a key section for ancient biogeochemical and paleo-redox reconstructions. Shales from well UR5 yielded initial 87Sr/86Sr ratios, Rb-Sr ages, and rare earth element plus yttrium (REEY) patterns similar to those of a dolerite sampled from the same core. We propose that the UR5 samples chronicle hydrothermal alteration instigated by the dolerite intrusion. In contrast, a correlative shale from well UR6 yielded an age consistent with the expected depositional age (1577 ± 56 Ma) with REEY and initial 87Sr/86Sr ratios similar to ca. 1.5 Ga seawater. We suggest that this sample records the minimum depositional age and early marine diagenetic history for this unit. This new technique can date Proterozoic shales quickly, cheaply, and with minimum sample preparation. Importantly, ages are triaged to differentiate between those recording primary marine versus secondary processes. This novel approach provides a potentially powerful tool for dating and fingerprinting the vast array of ancient marine shales for further studies of Earth systems through deep time.


2006 ◽  
Vol 10 ◽  
pp. 25-28 ◽  
Author(s):  
Dirk Frei ◽  
Julie A. Hollis ◽  
Axel Gerdes ◽  
Dan Harlov ◽  
Christine Karlsson ◽  
...  

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was developed in 1985 and the first commercial laser ablation systems were introduced in the mid 1990s. Since then, LA-ICP-MS has become an important analytical tool in the earth sciences. Initially, the main interest for geologists was in its ability to quantitatively determine the contents of a wide range of elements in many minerals at very low concentrations (a few ppm and below) with relatively high spatial resolution (spot diameters of typically 30–100 μm). The potential of LA-ICP-MS for rapid in situ U–Th–Pb geochronology was already realised in the early to mid 1990s. However, the full potential of LA-ICP-MS as the low-cost alternative to ion-microprobe techniques for highly precise and accurate in situ U–Th–Pb age dating was not realised until the relatively recent advances in laser technologies and the introduction of magnetic sectorfield ICP-MS (SF-ICPMS) instruments. In March 2005, the Geological Survey of Denmark and Greenland (GEUS) commissioned a new laser ablation magnetic sectorfield inductively coupled plasma mass spectrometry (LA-SF-ICP-MS) facility employing a ThermoFinnigan Element2 high resolution magnetic sectorfield ICP-MS and a Merchantek New Wave 213 nm UV laser ablation system. The new GEUS LA-SF-ICP-MS facility is widely used on Survey research projects in Denmark and Greenland, as well as in collaborative research and contract projects conducted with partners from academia and industry worldwide. Here, we present examples from some of the these ongoing studies that highlight the application of the new facility for advanced geochronological and trace element in situ microanalysis of geomaterials. The application of LASF-ICP-MS based in situ zircon geochronology to regional studies addressing the Archaean geology of southern West Greenland is presented by Hollis et al. (2006, this volume).


Geochronology ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 35-47
Author(s):  
Perach Nuriel ◽  
Jörn-Frederik Wotzlaw ◽  
Maria Ovtcharova ◽  
Anton Vaks ◽  
Ciprian Stremtan ◽  
...  

Abstract. Latest advances in laser ablation inductively coupled plasma mass spectrometer (LA-ICPMS) allow for accurate in situ U−Pb dating of carbonate material, with final age uncertainties usually >3 % 2σ. Cross-laboratory reference materials (RMs) used for sample-bracketing are currently limited to WC1 calcite with an age of 254.4±6.5 (2σ). The minimum uncertainty on any age determination with the LA-ICPMS method is therefore ≥2.5 %, and validation by secondary RMs is usually performed on in-house standards. This contribution presents a new reference material, ASH-15, a flowstone that is dated here by isotope dilution (ID) thermal ionization mass spectrometry (TIMS) analysis using 37 sub-samples, 1–7 mg each. Age results presented here are slightly younger compared to previous ID isotope ratio mass spectrometry (IRMS) U−Pb dates of ASH-15 but within uncertainties and in agreement with in situ analyses using WC1 as the primary RM. We provide new correction parameters to be used as primary or secondary standardization. The suggested 238U∕206Pb apparent age, not corrected for disequilibrium and without common-lead anchoring, is 2.965±0.011 Ma (uncertainties are 95 % confidence intervals). The new results could improve the propagated uncertainties on the final age with a minimal value of 0.4 %, which is approaching the uncertainty of typical ID analysis on higher-U materials such as zircon. We show that although LA-ICPMS spot analyses of ASH-15 exhibit significant scatter in their isotopic ratios, the down-hole fractionation of ASH-15 is similar to that of other reference materials. This high-U (≈1 ppm) and low-Pb (<0.01 ppm) calcite is most appropriate as a reference material for other speleothem-type carbonates but requires more-sensitive ICP-MS instruments such as the new generation of single-collector and multi-collector ICP-MS. Reference materials with high-Pb and low-U or both low-U and low-Pb compositions are still needed to fully cover the compositional range of carbonate material but may introduce analytical challenges.


Author(s):  
Le Zhang ◽  
Jia-Lin Wu ◽  
Yanqiang Zhang ◽  
Ya-Nan Yang ◽  
Pengli He ◽  
...  

Titanite is a widespread accessory nesosilicate with high trace-element contents including rare-earth elements, Th, and U, and is thus suitable for in situ isotopic and trace-element analyses and U–Pb dating....


Sign in / Sign up

Export Citation Format

Share Document