scholarly journals Investigation of Backfilling Step Effects on Stope Stability

Mining ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 155-166
Author(s):  
Huawei Xu ◽  
Derek B. Apel ◽  
Jun Wang ◽  
Chong Wei ◽  
Yashar Pourrahimian

Cemented rock fill (CRF) is commonly used in cut-and-fill stoping operations in underground mining. This allows for the maximum recovery of ore. Backfilling can improve stope stability in underground workings and then improve ground stability of the whole mine site. However, backfilling step scenarios vary from site to site. This paper presents the investigation of five different backfilling step scenarios and their impacts on the stability of stopes at four different mining levels. A comprehensive comparison of displacements, major principal stress, and Stress Concentration Factor (SCF) was conducted. The results show that different backfilling step scenarios have little influence on the final displacement for displacement in the stopes. Among the five backfilling scenarios, the major principal stress and stress concentration factor (SCF) have almost the same final results. The backfilling scenario SCN-1 is the optimum option among these five backfilling scenarios. It can immediately prevent the increase of the displacement and reduce the sidewall stress concentration, thereby preventing possible failures. Using the same strength of CRF can achieve the same effects among the four mining levels. Applying backfilling CRF of the same strength at different mining depths is acceptable and feasible to improve the stability of the stopes.

Author(s):  
Huawei Xu ◽  
Derek B. Apel ◽  
Jun Wang ◽  
Chong Wei ◽  
Yashar Pourrahimian

Cemented rock fill (CRF) is commonly used in cut-and-fill stoping operation in underground mining. This allows for the maximum recovery of ore. Backfilling can improve stope stability in underground workings, and then improve ground stability of the whole mine site. Backfilling step scenarios vary from site to site. This paper presents the investigation of five different backfilling step scenarios and their impacts on the stability of stopes at four different mining levels. A comprehensive comparison of displacements, major principal stress and stress concentration factor (SCF) was conducted. The results show that different backfilling step scenarios have little influence on the final displacement for displacement in the stopes. Among the five backfilling scenarios, the major principal stress and stress concentration factor (SCF) have almost the same final results. The backfilling scenario SCN-1 is the optimum option among these five backfilling scenarios. It can immediately prevent the increase of the displacement and reduce the sidewall stress concentration, thereby preventing possible failures. Using the same strength of CRF can achieve same effects among the four mining levels. Applying backfilling CRF of the same strength at different mining depths is acceptable and feasible to improve the stability of the stopes.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110264
Author(s):  
Zhang Ying ◽  
Lian Zhanghua ◽  
Gao Anqi ◽  
Yang Kun

The thread connection’s root fillet radius of 0.038″ size is the greatest weakness of the API NC type joints and thread. During the slimehole drilling, especially in the deep and ultra-deep gas well, its stress concentration factor and notch sensitivity factor are very high A novel thread connection design (TM) of a drilling tool is proposed to decrease the fatigue failure of the slimehole drilling tool in the deep and the ultra-deep gas well in the Tarim oilfield China. The novelty in the TM thread structure is, reducing the threads per inch, extending the distance from the last engaged thread to the external shoulder of the pin and adding three threads to the conventional connection. The novel thread connection will improve the slimehole drilling tool’s anti-fatigue life due to its improved elasticity and rigidity. Furthermore, the TM can transfer the maximum stress at the connection root to the loaded surface, which can effectively lower the fatigue notch’s sensitivity coefficient. In this paper, the finite element method (FEM) is applied to carry out the detailed comparative analysis of the TM with existing thread connection NC38, TX60 and TH90. The TM has the lowest stress concentration factor and fatigue notch sensitivity coefficient, so its anti-fatigue life is the highest. In addition, TM is manufactured and is tested at Tarim oilfield in China.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Changqing Miao ◽  
Yintao Wei ◽  
Xiangqiao Yan

A numerical approach for the stress concentration of periodic collinear holes in an infinite plate in tension is presented. It involves the fictitious stress method and a generalization of Bueckner's principle. Numerical examples are concluded to show that the numerical approach is very efficient and accurate for analyzing the stress concentration of periodic collinear holes in an infinite plate in tension. The stress concentration of periodic collinear square holes in an infinite plate in tension is studied in detail by using the numerical approach. The calculated stress concentration factor is proven to be accurate.


1955 ◽  
Vol 22 (2) ◽  
pp. 172-174
Author(s):  
I. Cornet ◽  
R. C. Grassi

Abstract Data are presented on the fracture of inoculated-iron thin-wall tubes, investigated under various ratios of axial to tangential stress, ranging from pure tension to pure compression. These data are consistent with published data on gray cast iron. It may be assumed that in cast-iron, plates of friable graphite in an iron matrix, act like solid iron with respect to compressive stresses, but they act as stress-concentrating cavities with respect to tensile stresses. This gives a stress-concentration factor, which is easily determined experimentally. Stress-concentration factors obtained were 3.2–3.3 for gray cast iron, and 2.4–2.5 for inoculated cast iron. A distortion-energy criterion for fracture, modified by this stress-concentration factor, is consistent with the experimental data. It appears that the concentration of the dispersed graphite, and the shape and size of this brittle phase, affect the fracture strength under combined stresses.


1950 ◽  
Vol 17 (3) ◽  
pp. 233-248
Author(s):  
L. F. Coffin

Abstract The mechanism of flow and fracture of a gray cast iron can be understood if one considers the microstructure to consist of a ductile structure with a random dispersion of cracks due to the graphite flakes following the concept of Fisher. A notch effective stress can be calculated for a critically situated crack by a knowledge of the external stresses, a plastic stress-concentration factor of 3, and a residual tensile stress at the sharp edge of the crack, based upon either the “maximum-shear” theory or the “distortion-energy” theory. This allows the formulation of generalized plastic stress-strain relationships and renders gray cast iron applicable to the many known solutions for plastic flow of ductile metals. Fracture in the region of tension-tension and tension-compression can be evaluated by a similar analysis, using the same stress-concentration factor and the same residual stress. A combined stress-testing program is described wherein thin-walled cast-iron tubes are subjected to two-dimensional states of combined stress covering the complete two-dimensional field.


2021 ◽  
Author(s):  
Ghiath (Guy) Mansour

Abstract Minimizing the stress concentration factor (SCF) in pipe joint welding subjected to fatigue is a major concern. Machining the joint ends is one way to achieve this. However, this adds cost, time, risk of potential crack starters, and loss of wall thickness which is detrimental for fatigue, strength, and engineering criticality assessment (ECA) in particular. Pipe joint sorting (certain joints in sequence) and end matching (rotating the pipe joints for best fit) are other ways. However, this adds time, costly logistics, risk of errors, and does not guarantee the minimum possible SCF is achieved. In a typical project, more pipe joints are procured than required in order to mitigate contingencies. For pipelines, this overage is typically a percentage of the required number of joints or pipeline length. For risers, typically double the required number of joints is procured where half of the joints is sent offshore for installation and the remaining half is kept onshore for a spare riser. Then, it becomes very important to send for installation the best pipe joints that produce the best (lowest) SCFs out of the entire batch of pipe joints. This requires calculating the SCF for every potential match of any random joints to be welded together, and then choosing the best joints. Performing such calculations by spreadsheet is not feasible considering the tremendous number of required iterations and calculations. A pipe joint management software development is presented herein which accomplishes this task and examples provided to illustrate the benefits. Note: Selecting pipe joints with the best end measurements, whether ID, OD, OOR, or thickness does not guarantee that the minimum possible SCFs will be achieved since the SCF is a function of all those measurements.


Sign in / Sign up

Export Citation Format

Share Document