scholarly journals Simulation of Oil Well Drilling System Using Distributed–Lumped Modelling Technique

Modelling ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 175-197
Author(s):  
Panagiotis Athanasiou ◽  
Yaser Hadi

The strengths and torque of well-boiling hydrocarbons are of utmost significance. Boiling a well is one of the most critical steps in the discovery and production of oil and gas. The well’s boiling process is expensive because the drilling depth can be as much as 7000 meters. Any delay (breakdown time) in boiling costs a lot of money for hydrocarbon firms. Various boiler parameters are continuously tracked and regulated to avoid drilling delays. This paper focuses on the vibrations occurring at the bottom hole assembly (BHA) stick-slip. Two modelling methods, the lumped parameter model and the combination of the distributed–lumped (D–L) parameter model, were used and compared to the actual measurement performance. The D–L model was found to be more precise, particularly for long strings. Using the simulations, the most comprehensive modelling methodology is introduced.

2006 ◽  
Vol 128 (4) ◽  
pp. 268-274 ◽  
Author(s):  
Ahmet S. Yigit ◽  
Andreas P. Christoforou

Drillstring vibrations and in particular stick-slip and bit-bounce are detrimental to oil-well drilling operations. Controlling these vibrations is essential because they may cause equipment failures and damage to the oil-well. A simple model that adequately captures the dynamics is used to simulate the effects of varying operating conditions on stick-slip and bit-bounce interactions. It is shown that the conditions at the bit/formation interface, such as bit speed and formation stiffness, are major factors in shaping the dynamic response. Due to the varying and uncertain nature of these conditions, simple operational guidelines or active rotary table control strategies are not sufficient to eliminate both stick-slip and bit-bounce. It is demonstrated that an additional active controller for the axial motion can be effective in suppressing both stick-slip and bit-bounce. It is anticipated that if the proposed approach is implemented, smooth drilling will be possible for a wide range of conditions.


2019 ◽  
Vol 11 (3) ◽  
pp. 168781401983153
Author(s):  
Sigve Hovda

A multi-dimensional lumped element model of a long non-rotating rod that moves on a slick surface with both dynamic and static Coulomb friction is outlined. The rod is accelerated to a constant velocity, and the free end of the rod experiences the effect of stick and slip. This article describes a new modeling approach, where the model is able to switch between different linear semi-analytical sub-models, depending on how much of the rod is moving. Fundamental understanding of the stick–slip effect is revealed, and a potential shortcoming of the model is also discussed. The model is computationally effective and may be suitable for real-time applications in, for instance, oil-well drilling.


Author(s):  
Massinissa Derbal ◽  
Mohamed Gharib ◽  
Shady S Refaat ◽  
Alan Palazzolo ◽  
Sadok Sassi

Drillstring–borehole interaction can produce severely damaging vibrations. An example is stick–slip vibration, which negatively affects drilling performance, tool integrity and completion time, and costs. Attempts to mitigate stick–slip vibration typically use passive means and/or change the operation parameters, such as weight on bit and rotational speed. Automating the latter approach, by means of feedback control, holds the promise of quicker and more effective mitigation. The present work presents three separate fractional-order controllers for mitigating drillstring slip–stick vibrations. For the sake of illustration, the drillstring is represented by a torsional vibration lumped parameter model with four degrees of freedom, including parameter uncertainty. The robustness of these fractional-order controllers is compared with traditional proportional-integral-derivative controllers under variation of the weight on bit and the drill bit’s desired rotary speed. The results confirm the proposed controllers effectiveness and feasibility, with rapid time response and less overshoot than conventional proportional-integral-derivative controllers.


Author(s):  
Liu Hong ◽  
Jaspreet Singh Dhupia

Excessive vibrations of the drill strings, e.g., the stick-slip vibration, are the primary cause of premature failures and drilling inefficiencies in oil well drilling. To investigate and suppress such vibrations, this paper studies the dynamics of drill strings using a lumped parameter model, in which both the torsional stick-slip and lateral vibrations are taken into consideration. The friction torque due to the downhole bit-rock interaction, which plays a key role in stick-slip vibration, is modeled as a hysteretic dry friction function. Simulated results of this developed model are shown to have a close qualitative agreement with the field observations in terms of stick-slip vibrations. Afterwards, a sliding mode controller is applied to mitigate the undesired vibrations of drill strings. A good control performance in suppressing the stick-slip phenomenon is demonstrated for the proposed controller. However, numerical simulations also demonstrate that the control action can excite lateral instability in the system, which can result in impacts between the drill collars and the borehole wall due to the large amplitude in lateral vibrations. Thus, a proper choice of the control parameters is essential to suppress the vibrations in the drill strings. The developed lumped parameter model describing the coupled torsional and lateral response in the controlled drill strings presented in this paper can be used to aid in offline tuning of those control variables.


2011 ◽  
Author(s):  
Jayesh R. Jain ◽  
Leroy William Ledgerwood ◽  
Olivier Jean-Marie Hoffmann ◽  
Thorsten Schwefe ◽  
Danielle Moltz Fuselier
Keyword(s):  
Oil Well ◽  

2018 ◽  
Vol 7 (4) ◽  
pp. 4683
Author(s):  
Mirvat Abdallah ◽  
Fatima Haidar

Finding a new oil well is a stimulating experience at all levels, however, it’s only an important milestone on the road towards exploiting oil and gas. When it comes to well drilling, the condition of the ground that surrounds the oil plays a major role. While there are many factors that dictate the success of exploring and drilling wells, porosity and permeability of the surrounding stone are some of the most important components.This paper focuses on the effective way to increase the porosity and the permeability of the rock using explosives without damaging the rock. In order to reach our aim, a numerical simulation was conducted. In fact, a 2D distinct element code was used, and 4 models were constructed; in each model the number of explosives increase while the blast load per explosive decreases.The dynamic stresses, and velocity vectors of the wave propagation were analyzed to evaluate the behavior of rock masses in each model. Moreover, a grid of history points was studied in order to compare the results and find the most suitable method to increase the crack propagation, therefore, the porosity and permeability along the rock masses, without damaging it.  


2017 ◽  
pp. 30-36
Author(s):  
R. V. Urvantsev ◽  
S. E. Cheban

The 21st century witnessed the development of the oil extraction industry in Russia due to the intensifica- tion of its production at the existing traditional fields of Western Siberia, the Volga region and other oil-extracting regions, and due discovering new oil and gas provinces. At that time the path to the development of fields in Eastern Siberia was already paved. The large-scale discoveries of a number of fields made here in the 70s-80s of the 20th century are only being developed now. The process of development itself is rather slow in view of a number of reasons. Create a problem of high cost value of oil extraction in the region. One of the major tasks is obtaining the maximum oil recovery factor while reducing the development costs. The carbonate layer lying within the Katangsky suite is low-permeability, and its inventories are categorised as hard to recover. Now, the object is at a stage of trial development,which foregrounds researches on selecting the effective methods of oil extraction.


Author(s):  
Ikpe E. Aniekan ◽  
Owunna Ikechukwu ◽  
Satope Paul

Four different riser pipe exit configurations were modelled and the flow across them analysed using STAR CCM+ CFD codes. The analysis was limited to exit configurations because of the length to diameter ratio of riser pipes and the limitations of CFD codes available. Two phase flow analysis of the flow through each of the exit configurations was attempted. The various parameters required for detailed study of the flow were computed. The maximum velocity within the pipe in a two phase flow were determined to 3.42 m/s for an 8 (eight) inch riser pipe. After thorough analysis of the two phase flow regime in each of the individual exit configurations, the third and the fourth exit configurations were seen to have flow properties that ensures easy flow within the production system as well as ensure lower computational cost. Convergence (Iterations), total pressure, static pressure, velocity and pressure drop were used as criteria matrix for selecting ideal riser exit geometry, and the third exit geometry was adjudged the ideal exit geometry of all the geometries. The flow in the third riser exit configuration was modelled as a two phase flow. From the results of the two phase flow analysis, it was concluded that the third riser configuration be used in industrial applications to ensure free flow of crude oil and gas from the oil well during oil production.


2021 ◽  
Vol 1064 (1) ◽  
pp. 012059
Author(s):  
R R Gazizov ◽  
A P Chizhov ◽  
V E Andreev ◽  
A V Chibisov ◽  
V V Mukhametshin ◽  
...  

2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Qilong Xue ◽  
Ruihe Wang ◽  
Baolin Liu ◽  
Leilei Huang

In the oil and gas drilling engineering, measurement-while-drilling (MWD) system is usually used to provide real-time monitoring of the position and orientation of the bottom hole. Particularly in the rotary steerable drilling technology and application, it is a challenge to measure the spatial attitude of the bottom drillstring accurately in real time while the drillstring is rotating. A set of “strap-down” measurement system was developed in this paper. The triaxial accelerometer and triaxial fluxgate were installed near the bit, and real-time inclination and azimuth can be measured while the drillstring is rotating. Furthermore, the mathematical model of the continuous measurement was established during drilling. The real-time signals of the accelerometer and the fluxgate sensors are processed and analyzed in a time window, and the movement patterns of the drilling bit will be observed, such as stationary, uniform rotation, and stick–slip. Different signal processing methods will be used for different movement patterns. Additionally, a scientific approach was put forward to improve the solver accuracy benefit from the use of stick–slip vibration phenomenon. We also developed the Kalman filter (KF) to improve the solver accuracy. The actual measurement data through drilling process verify that the algorithm proposed in this paper is reliable and effective and the dynamic measurement errors of inclination and azimuth are effectively reduced.


Sign in / Sign up

Export Citation Format

Share Document