lumped element model
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 28)

H-INDEX

10
(FIVE YEARS 2)

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 22
Author(s):  
Shubham Shubham ◽  
Yoonho Seo ◽  
Vahid Naderyan ◽  
Xin Song ◽  
Anthony J. Frank Frank ◽  
...  

Audio applications such as mobile phones, hearing aids, true wireless stereo earphones, and Internet of Things devices demand small size, high performance, and reduced cost. Microelectromechanical system (MEMS) capacitive microphones fulfill these requirements with improved reliability and specifications related to sensitivity, signal-to-noise ratio (SNR), distortion, and dynamic range when compared to their electret condenser microphone counterparts. We present the design and modeling of a semiconstrained polysilicon diaphragm with flexible springs that are simply supported under bias voltage with a center and eight peripheral protrusions extending from the backplate. The flexible springs attached to the diaphragm reduce the residual film stress effect more effectively compared to constrained diaphragms. The center and peripheral protrusions from the backplate further increase the effective area, linearity, and sensitivity of the diaphragm when the diaphragm engages with these protrusions under an applied bias voltage. Finite element modeling approaches have been implemented to estimate deflection, compliance, and resonance. We report an 85% increase in the effective area of the diaphragm in this configuration with respect to a constrained diaphragm and a 48% increase with respect to a simply supported diaphragm without the center protrusion. Under the applied bias, the effective area further increases by an additional 15% as compared to the unbiased diaphragm effective area. A lumped element model has been also developed to predict the mechanical and electrical behavior of the microphone. With an applied bias, the microphone has a sensitivity of −38 dB (ref. 1 V/Pa at 1 kHz) and an SNR of 67 dBA measured in a 3.25 mm ´ 1.9 mm ´ 0.9 mm package including an analog ASIC.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1191
Author(s):  
Richard Syms ◽  
Adam Bouchaala

Micro-electromechanical systems (MEMS) bandpass filters based on arrays of electrostatically driven coupled beams have been demonstrated at MHz frequencies. High performance follows from the high Q-factor of mechanical resonators, and electrostatic transduction allows tuning, matching and actuation. For high-order filters, there is a conflict between the transduction mechanism and the coupling arrangement needed for dynamic synchronization: it is not possible to achieve synchronization and tuning simultaneously using a single voltage. Here we propose a general solution, based on the addition of mass-loaded beams at the ends of the array. These beams deflect for direct current (DC) voltages, and therefore allow electrostatic tuning, but do not respond to in-band alternating current (AC) voltages and hence do not interfere with synchronization. Spurious modes generated by these beams may be damped, leaving a good approximation to the desired response. The approach is introduced using a lumped element model and verified using stiffness matrix and finite element models for in-plane arrays with parallel plate drives and shown to be tolerant of the exact mass value. The principle may allow compensation of fabrication-induced variations in complex filters.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1038
Author(s):  
Vinh-Tan Nguyen ◽  
Jason Yu Chuan Leong ◽  
Satoshi Watanabe ◽  
Toshimitsu Morooka ◽  
Takayuki Shimizu

The ink drop generation process in piezoelectric droplet-on-demand devices is a complex multiphysics process. A fully resolved simulation of such a system involves a coupled fluid–structure interaction approach employing both computational fluid dynamics (CFD) and computational structural mechanics (CSM) models; thus, it is computationally expensive for engineering design and analysis. In this work, a simplified lumped element model (LEM) is proposed for the simulation of piezoelectric inkjet printheads using the analogy of equivalent electrical circuits. The model’s parameters are computed from three-dimensional fluid and structural simulations, taking into account the detailed geometrical features of the inkjet printhead. Inherently, this multifidelity LEM approach is much faster in simulations of the whole inkjet printhead, while it ably captures fundamental electro-mechanical coupling effects. The approach is validated with experimental data for an existing commercial inkjet printhead with good agreement in droplet speed prediction and frequency responses. The sensitivity analysis of droplet generation conducted for the variation of ink channel geometrical parameters shows the importance of different design variables on the performance of inkjet printheads. It further illustrates the effectiveness of the proposed approach in practical engineering usage.


2021 ◽  
Vol 7 (2) ◽  
pp. 36
Author(s):  
Muhammad Yasir ◽  
Pietro Zaccagnini ◽  
Gianluca Palmara ◽  
Francesca Frascella ◽  
Niccolò Paccotti ◽  
...  

Carbon based materials exhibit interesting mechanical, thermal and electrical properties which make them excellent contenders for use as fillers in composites as film. Graphene has been vastly used among the carbon-based materials. More recently eco-friendly carbon-based materials like biochar have emerged. The deployment of carbon-based materials in films needs to be studied since films are more versatile and permit the exploitation of electrical properties of such materials over circuits and systems. Typical circuits and systems exploiting electrical properties of novel materials perform a number of applications including sensing, detection, tunable devices and energy harvesting. In this paper, films composed of 9:1 graphene or biochar are deployed on a microstrip line. The morphological properties of graphene and biochar and their respective films are studied with Raman spectra and Field Emission Scanning Electron Microscope (FESEM). The electrical properties (four-point probe measurements and scattering parameter measurements) of the films. Low frequency measurements are used as starting point for circuit models estimating the lumped impedance of the films. From the morphological characterization it is shown that biochar films appear as granulates carbonaceous materials whereas graphene films contains several flakes forming a network. From the low frequency measurements and microwave characterization it is seen that graphene films are more conductive as compared to biochar films. In many applications, it is useful to know the surface impedance of the film since it varies on interaction with any external stimulus (variation of pressure, humidity, gas, etc.)


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1234
Author(s):  
Joel Joseph ◽  
Makoto Ohtsuka ◽  
Hiroyuki Miki ◽  
Manfred Kohl

This paper presents a lumped element model (LEM) to describe the coupled dynamic properties of thermomagnetic generators (TMGs) based on magnetic shape memory alloy (MSMA) films. The TMG generators make use of the concept of resonant self-actuation of a freely movable cantilever, caused by a large abrupt temperature-dependent change of magnetization and rapid heat transfer inherent to the MSMA films. The LEM is validated for the case of a Ni-Mn-Ga film with Curie temperature TC of 375 K. For a heat source temperature of 443 K, the maximum power generated is 3.1 µW corresponding to a power density with respect to the active material’s volume of 80 mW/cm3. Corresponding LEM simulations allow for a detailed study of the time-resolved temperature change of the MSMA film, the change of magnetic field at the position of the film and of the corresponding film magnetization. Resonant self-actuation is observed at 114 Hz, while rapid temperature changes of about 10 K occur within 1 ms during mechanical contact between heat source and Ni-Mn-Ga film. The LEM is used to estimate the effect of decreasing TC on the lower limit of heat source temperature in order to predict possible routes towards waste heat recovery near room temperature.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ahmad H. Bokhari ◽  
Martin Berggren ◽  
Daniel Noreland ◽  
Eddie Wadbro

AbstractA subwoofer generates the lowest frequency range in loudspeaker systems. Subwoofers are used in audio systems for live concerts, movie theatres, home theatres, gaming consoles, cars, etc. During the last decades, numerical simulations have emerged as a cost- and time-efficient complement to traditional experiments in the design process of different products. The aim of this study is to reduce the computational time of simulating the average response for a given subwoofer design. To this end, we propose a hybrid 2D–3D model that reduces the computational time significantly compared to a full 3D model. The hybrid model describes the interaction between different subwoofer components as interacting modules whose acoustic properties can partly be pre-computed. This allows us to efficiently compute the performance of different subwoofer design layouts. The results of the hybrid model are validated against both a lumped element model and a full 3D model over a frequency band of interest. The hybrid model is found to be both accurate and computationally efficient.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6514
Author(s):  
Andrea Matiz-Chicacausa ◽  
Omar D. Lopez Mejia

In this paper, an accurate model to simulate the dynamics of the flow of synthetic jets (SJ) in quiescent flow is proposed. Computational modeling is an effective approach to understand the physics involved in these devices, commonly used in active flow control for several reasons. For example, SJ actuators are small; hence, it is difficult to experimentally measure pressure changes within the cavity. Although computational modeling is an advantageous approach, experiments are still the main technique employed in the study of SJs due to the lack of accurate computational models. The same aspect that represents an advantage over other techniques also represents a challenge for the computational simulations, such as capturing the unsteady phenomena, localized compressible effects, and boundary layer formation characteristic of this complex flow. One of the main challenges in the simulation of SJs is related to the fact that the spatial and temporal scales of the actuator and the corresponding flow control application differed in several orders of magnitude. Hence, in this study we focus on the use of Computational Fluid Dynamics (CFD) and Reduced Order Models (ROM) to develop an accurate yet low-cost model to capture the complexities of the flow of a SJ in quiescent flow. Numerical results show two possible paths for SJ modeling; (1) to obtain a boundary condition to predict velocity profile and jet formation from experimental data of diaphragm’s deformation; and, (2) to predict peak velocity at the jet’s outlet with a ROM approach and to use the physical details of the actuator to develop an accurate boundary condition for CFD. Both approaches are validated through experimental data available in the literature; good agreement between results from CFD, Lumped Element Model (LEM), and experimental data are achieved. Finally, it was concluded that the coupling between LEM and CFD is a novel and accurate approach, which improves CFD due to the advantages of LEM closing the gap between LEM’s lack of flow detail and CFD’s lack of geometrical/physical information of the actuator.


Sign in / Sign up

Export Citation Format

Share Document