scholarly journals Logit Truncated-Exponential Skew-Logistic Distribution with Properties and Applications

Modelling ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 776-794
Author(s):  
Liyuan Pang ◽  
Weizhong Tian ◽  
Tingting Tong ◽  
Xiangfei Chen

In recent years, bounded distributions have attracted extensive attention. At the same time, various areas involve bounded interval data, such as proportion and ratio. In this paper, we propose a new bounded model, named logistic Truncated exponential skew logistic distribution. Some basic statistical properties of the proposed distribution are studied, including moments, mean residual life function, Renyi entropy, mean deviation, order statistics, exponential family, and quantile function. The maximum likelihood method is used to estimate the unknown parameters of the proposed distribution. More importantly, the applications to three real data sets mainly from the field of engineering science prove that the logistic Truncated exponential skew logistic distribution fits better than other bounded distributions.

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Huda M. Alshanbari ◽  
Abd Al-Aziz Hosni El-Bagoury ◽  
Ahmed M. Gemeay ◽  
E. H. Hafez ◽  
Ahmed Sedky Eldeeb

This paper introduced a relatively new mixture distribution that results from a mixture of Fréchet–Weibull and Pareto distributions. Some properties of the new statistical model were derived, such as moments with their related measures, moment generating function, mean residual life function, and mean deviation. Furthermore , different estimation methods were introduced for determining the unknown parameters of the proposed model. Finally, we introduced three real data sets which were applied to our distribution and compared them with other well-known statistical competitive models to show the superiority of our model for fitting the three real data sets, and we can clearly see that our distribution outperforms its competitors. Also, to verify our results, we carried out the existence and uniqueness test to the log-likelihood to determine whether the roots are global maximum or not.


Author(s):  
H. E. Hozaien ◽  
G. R. AL Dayian ◽  
A. A. EL-Helbawy

In this paper, the alpha power Kumaraswamy distribution, new alpha power transformed Kumaraswamy distribution and new extended alpha power transformed Kumaraswamy distribution are presented. Some statistical properties of the three distributions are derived including quantile function, moments and moment generating function, mean residual life and order statistics. Estimation of the unknown parameters based on maximum likelihood estimation are obtained. A simulation study is carried out. Finally, a real data set is applied.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 510
Author(s):  
Bo Peng ◽  
Zhengqiu Xu ◽  
Min Wang

We introduce a new three-parameter lifetime distribution, the exponentiated Lindley geometric distribution, which exhibits increasing, decreasing, unimodal, and bathtub shaped hazard rates. We provide statistical properties of the new distribution, including shape of the probability density function, hazard rate function, quantile function, order statistics, moments, residual life function, mean deviations, Bonferroni and Lorenz curves, and entropies. We use maximum likelihood estimation of the unknown parameters, and an Expectation-Maximization algorithm is also developed to find the maximum likelihood estimates. The Fisher information matrix is provided to construct the asymptotic confidence intervals. Finally, two real-data examples are analyzed for illustrative purposes.


2018 ◽  
Vol 10 (04) ◽  
pp. 1850009 ◽  
Author(s):  
Gamze Ozel ◽  
Emrah Altun ◽  
Morad Alizadeh ◽  
Mahdieh Mozafari

In this paper, a new heavy-tailed distribution is used to model data with a strong right tail, as often occuring in practical situations. The proposed distribution is derived from the log-normal distribution, by using odd log-logistic distribution. Statistical properties of this distribution, including hazard function, moments, quantile function, and asymptotics, are derived. The unknown parameters are estimated by the maximum likelihood estimation procedure. For different parameter settings and sample sizes, a simulation study is performed and the performance of the new distribution is compared to beta log-normal. The new lifetime model can be very useful and its superiority is illustrated by means of two real data sets.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Rashad Bantan ◽  
Amal S. Hassan ◽  
Mahmoud Elsehetry ◽  
B. M. Golam Kibria

This paper proposed a new probability distribution, namely, the half-logistic xgamma (HLXG) distribution. Various statistical properties, such as, moments, incomplete moments, mean residual life, and stochastic ordering of the proposed distribution, are discussed. Parameter estimation of the half-logistic xgamma distribution is approached by the maximum likelihood method based on complete and censored samples. Asymptotic confidence intervals of model parameters are provided. A simulation study is conducted to illustrate the theoretical results. Moreover, the model parameters of the HLXG distribution are estimated by using the maximum likelihood, least square, maximum product spacing, percentile, and Cramer–von Mises (CVM) methods. Superiority of the new model over some existing distributions is illustrated through three real data sets.


Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1144
Author(s):  
Zakeia A. Al-Saiary ◽  
Rana A. Bakoban

In this article, a new three parameters lifetime model called the Topp-Leone Generalized Inverted Exponential (TLGIE) Distribution is introduced. Various properties of the model are derived, including moments, quantile function, survival function, hazard rate function, mean deviation and mode. The method of maximum likelihood is used to estimate the unknown parameters. The properties of the maximum likelihood estimators using Fisher information matrix are studied. Three real data sets are applied for illustrative purpose of this study.


2020 ◽  
pp. 136-146
Author(s):  
Govinda Prasad Dhungana

A new Poisson Inverted Exponential distribution is developed from the Poisson family of distribution, which has two parameters. The characteristic of the intended model is unimodal, positive skewed and platykurtic, while the characteristic of the hazard function is the inverted bathtub and the decreasing order. Explicit expression of quantile function, moments (including incomplete and conditional moments), moment generating function, residual life function, R`enyi and q-entropies, probability weighted moment and order statistics of the intended model. The value of unknown parameters is estimated by the maximum likelihood estimate with the confidence interval. Similarly, purposed model compared with well-known other five distributions through different criteria like as goodness of fit, P-P plot, Q-Q plots and K-S test. Likewise, we fitted the PDF and CDF of purposed model with other models, it is clear that intended model is great flexibility and satisfactory fit than those models. Therefore purposed model is more useful in real data and life time data analysis and modelling.


2021 ◽  
Vol 71 (4) ◽  
pp. 983-1004
Author(s):  
Majid Hashempour

Abstract In this paper, we introduce a new two-parameter lifetime distribution which is called extended Half-Logistic (EHL) distribution. Theoretical properties of this model including the hazard function, quantile function, asymptotic, extreme value, moments, conditional moments, mean residual life, mean past lifetime, residual entropy, cumulative residual entropy and order statistics are derived and studied in details. The maximum likelihood estimates of parameters are compared with various methods of estimations by conducting a simulation study. Finally, two real data sets are illustration the purposes.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 446 ◽  
Author(s):  
Mahmoud EL-Morshedy ◽  
Fahad Sameer Alshammari ◽  
Abhishek Tyagi ◽  
Iberahim Elbatal ◽  
Yasser S. Hamed ◽  
...  

In this article, we have proposed a new generalization of the odd Weibull-G family by consolidating two notable families of distributions. We have derived various mathematical properties of the proposed family, including quantile function, skewness, kurtosis, moments, incomplete moments, mean deviation, Bonferroni and Lorenz curves, probability weighted moments, moments of (reversed) residual lifetime, entropy and order statistics. After producing the general class, two of the corresponding parametric statistical models are outlined. The hazard rate function of the sub-models can take a variety of shapes such as increasing, decreasing, unimodal, and Bathtub shaped, for different values of the parameters. Furthermore, the sub-models of the introduced family are also capable of modelling symmetric and skewed data. The parameter estimation of the special models are discussed by numerous methods, namely, the maximum likelihood, simple least squares, weighted least squares, Cramér-von Mises, and Bayesian estimation. Under the Bayesian framework, we have used informative and non-informative priors to obtain Bayes estimates of unknown parameters with the squared error and generalized entropy loss functions. An extensive Monte Carlo simulation is conducted to assess the effectiveness of these estimation techniques. The applicability of two sub-models of the proposed family is illustrated by means of two real data sets.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 726
Author(s):  
Lamya A. Baharith ◽  
Wedad H. Aljuhani

This article presents a new method for generating distributions. This method combines two techniques—the transformed—transformer and alpha power transformation approaches—allowing for tremendous flexibility in the resulting distributions. The new approach is applied to introduce the alpha power Weibull—exponential distribution. The density of this distribution can take asymmetric and near-symmetric shapes. Various asymmetric shapes, such as decreasing, increasing, L-shaped, near-symmetrical, and right-skewed shapes, are observed for the related failure rate function, making it more tractable for many modeling applications. Some significant mathematical features of the suggested distribution are determined. Estimates of the unknown parameters of the proposed distribution are obtained using the maximum likelihood method. Furthermore, some numerical studies were carried out, in order to evaluate the estimation performance. Three practical datasets are considered to analyze the usefulness and flexibility of the introduced distribution. The proposed alpha power Weibull–exponential distribution can outperform other well-known distributions, showing its great adaptability in the context of real data analysis.


Sign in / Sign up

Export Citation Format

Share Document