scholarly journals Kumaraswamy Distribution Based on Alpha Power Transformation Methods

Author(s):  
H. E. Hozaien ◽  
G. R. AL Dayian ◽  
A. A. EL-Helbawy

In this paper, the alpha power Kumaraswamy distribution, new alpha power transformed Kumaraswamy distribution and new extended alpha power transformed Kumaraswamy distribution are presented. Some statistical properties of the three distributions are derived including quantile function, moments and moment generating function, mean residual life and order statistics. Estimation of the unknown parameters based on maximum likelihood estimation are obtained. A simulation study is carried out. Finally, a real data set is applied.

Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 510
Author(s):  
Bo Peng ◽  
Zhengqiu Xu ◽  
Min Wang

We introduce a new three-parameter lifetime distribution, the exponentiated Lindley geometric distribution, which exhibits increasing, decreasing, unimodal, and bathtub shaped hazard rates. We provide statistical properties of the new distribution, including shape of the probability density function, hazard rate function, quantile function, order statistics, moments, residual life function, mean deviations, Bonferroni and Lorenz curves, and entropies. We use maximum likelihood estimation of the unknown parameters, and an Expectation-Maximization algorithm is also developed to find the maximum likelihood estimates. The Fisher information matrix is provided to construct the asymptotic confidence intervals. Finally, two real-data examples are analyzed for illustrative purposes.


Author(s):  
Amal Hassan ◽  
Mohamed Sabry ◽  
Ahmed Elsehetry

The truncated distributions have been widely studied, mainly in life-testing and reliability analysis.  In this paper, we introduce a new right truncated generator related to power Lomax distribution, referred to right truncated power Lomax--G family. The proposed family is a generalization of recently [0, 1] truncated Lomax-G family. Statistical properties like; moments, moment generating function, probability weighted moments, quantile function, mean deviation, order statistics and Rényi entropy are derived. Five new sub-models from the truncated family are presented. Maximum likelihood estimation is investigated and simulation issues are discussed for truncated power Lomax Weibull model as particular case from the family. The flexibility of the truncated power Lomax Weibull is assessed by applying it to a real data set. The application indicates that the truncated power Lomax Weibull distribution model can give better fits than other well-known lifetime distributions.


2020 ◽  
pp. 136-146
Author(s):  
Govinda Prasad Dhungana

A new Poisson Inverted Exponential distribution is developed from the Poisson family of distribution, which has two parameters. The characteristic of the intended model is unimodal, positive skewed and platykurtic, while the characteristic of the hazard function is the inverted bathtub and the decreasing order. Explicit expression of quantile function, moments (including incomplete and conditional moments), moment generating function, residual life function, R`enyi and q-entropies, probability weighted moment and order statistics of the intended model. The value of unknown parameters is estimated by the maximum likelihood estimate with the confidence interval. Similarly, purposed model compared with well-known other five distributions through different criteria like as goodness of fit, P-P plot, Q-Q plots and K-S test. Likewise, we fitted the PDF and CDF of purposed model with other models, it is clear that intended model is great flexibility and satisfactory fit than those models. Therefore purposed model is more useful in real data and life time data analysis and modelling.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Huda M. Alshanbari ◽  
Abd Al-Aziz Hosni El-Bagoury ◽  
Ahmed M. Gemeay ◽  
E. H. Hafez ◽  
Ahmed Sedky Eldeeb

This paper introduced a relatively new mixture distribution that results from a mixture of Fréchet–Weibull and Pareto distributions. Some properties of the new statistical model were derived, such as moments with their related measures, moment generating function, mean residual life function, and mean deviation. Furthermore , different estimation methods were introduced for determining the unknown parameters of the proposed model. Finally, we introduced three real data sets which were applied to our distribution and compared them with other well-known statistical competitive models to show the superiority of our model for fitting the three real data sets, and we can clearly see that our distribution outperforms its competitors. Also, to verify our results, we carried out the existence and uniqueness test to the log-likelihood to determine whether the roots are global maximum or not.


Modelling ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 776-794
Author(s):  
Liyuan Pang ◽  
Weizhong Tian ◽  
Tingting Tong ◽  
Xiangfei Chen

In recent years, bounded distributions have attracted extensive attention. At the same time, various areas involve bounded interval data, such as proportion and ratio. In this paper, we propose a new bounded model, named logistic Truncated exponential skew logistic distribution. Some basic statistical properties of the proposed distribution are studied, including moments, mean residual life function, Renyi entropy, mean deviation, order statistics, exponential family, and quantile function. The maximum likelihood method is used to estimate the unknown parameters of the proposed distribution. More importantly, the applications to three real data sets mainly from the field of engineering science prove that the logistic Truncated exponential skew logistic distribution fits better than other bounded distributions.


Author(s):  
Hamdy Salem ◽  
Abd-Elwahab Hagag

In this paper, a composite distribution of Kumaraswamy and Lindley distributions namely, Kumaraswamy-Lindley Kum-L distribution is introduced and studied. The Kum-L distribution generalizes sub-models for some widely known distributions. Some mathematical properties of the Kum-L such as hazard function, quantile function, moments, moment generating function and order statistics are obtained. Estimation of parameters for the Kum-L using maximum likelihood estimation and least square estimation techniques are provided. To illustrate the usefulness of the proposed distribution, simulation study and real data example are used.


Author(s):  
Bassa Shiwaye Yakura ◽  
Ahmed Askira Sule ◽  
Mustapha Mohammed Dewu ◽  
Kabiru Ahmed Manju ◽  
Fadimatu Bawuro Mohammed

This article uses the odd Lomax-G family of distributions to study a new extension of the Kumaraswamy distribution called “odd Lomax-Kumaraswamy distribution”. In this article, the density and distribution functions of the odd Lomax-Kumaraswamy distribution are defined and studied with many other properties of the distribution such as the ordinary moments, moment generating function, characteristic function, quantile function, reliability functions, order statistics and other useful measures. The model parameters are estimated by the method of maximum likelihood. The goodness-of-fit of the proposed distribution is demonstrated using two real data sets.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
M. Nagy ◽  
Ehab M. Almetwally ◽  
Ahmed M. Gemeay ◽  
Heba S. Mohammed ◽  
Taghreed M. Jawa ◽  
...  

This paper aims to introduce a superior discrete statistical model for the coronavirus disease 2019 (COVID-19) mortality numbers in Saudi Arabia and Latvia. We introduced an optimal and superior statistical model to provide optimal modeling for the death numbers due to the COVID-19 infections. This new statistical model possesses three parameters. This model is formulated by combining both the exponential distribution and extended odd Weibull family to formulate the discrete extended odd Weibull exponential (DEOWE) distribution. We introduced some of statistical properties for the new distribution, such as linear representation and quantile function. The maximum likelihood estimation (MLE) method is applied to estimate the unknown parameters of the DEOWE distribution. Also, we have used three datasets as an application on the COVID-19 mortality data in Saudi Arabia and Latvia. These three real data examples were used for introducing the importance of our distribution for fitting and modeling this kind of discrete data. Also, we provide a graphical plot for the data to ensure our results.


2018 ◽  
Vol 10 (04) ◽  
pp. 1850009 ◽  
Author(s):  
Gamze Ozel ◽  
Emrah Altun ◽  
Morad Alizadeh ◽  
Mahdieh Mozafari

In this paper, a new heavy-tailed distribution is used to model data with a strong right tail, as often occuring in practical situations. The proposed distribution is derived from the log-normal distribution, by using odd log-logistic distribution. Statistical properties of this distribution, including hazard function, moments, quantile function, and asymptotics, are derived. The unknown parameters are estimated by the maximum likelihood estimation procedure. For different parameter settings and sample sizes, a simulation study is performed and the performance of the new distribution is compared to beta log-normal. The new lifetime model can be very useful and its superiority is illustrated by means of two real data sets.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Masood Anwar ◽  
Amna Bibi

A new three-parameter generalized distribution, namely, half-logistic generalized Weibull (HLGW) distribution, is proposed. The proposed distribution exhibits increasing, decreasing, bathtub-shaped, unimodal, and decreasing-increasing-decreasing hazard rates. The distribution is a compound distribution of type I half-logistic-G and Dimitrakopoulou distribution. The new model includes half-logistic Weibull distribution, half-logistic exponential distribution, and half-logistic Nadarajah-Haghighi distribution as submodels. Some distributional properties of the new model are investigated which include the density function shapes and the failure rate function, raw moments, moment generating function, order statistics, L-moments, and quantile function. The parameters involved in the model are estimated using the method of maximum likelihood estimation. The asymptotic distribution of the estimators is also investigated via Fisher’s information matrix. The likelihood ratio (LR) test is used to compare the HLGW distribution with its submodels. Some applications of the proposed distribution using real data sets are included to examine the usefulness of the distribution.


Sign in / Sign up

Export Citation Format

Share Document