scholarly journals Solvent-Free Synthesis, DNA-Topoisomerase II Activity and Molecular Docking Study of New Asymmetrically N,N'-Substituted Ureas

Molecules ◽  
2012 ◽  
Vol 17 (11) ◽  
pp. 12882-12894 ◽  
Author(s):  
Andressa Esteves-Souza ◽  
Claudio Rodrigues-Santos ◽  
Catarina Del Cistia ◽  
Daniel Silva ◽  
Carlos Sant'Anna ◽  
...  
2018 ◽  
Vol 5 (6) ◽  
pp. 172407 ◽  
Author(s):  
Hany M. Hassanin ◽  
Rabah A. T. Serya ◽  
Wafaa R. Abd Elmoneam ◽  
Mai A. Mostafa

A series of novel pyranoquinolinone-based Schiff's bases were designed and synthesized. They were evaluated for topoisomerase IIβ (TOP2B) inhibitory activity, and cytotoxicity against breast cancer cell line (MCF-7) for the development of novel anticancer agents. A molecular docking study was employed to investigate their binding and functional properties as TOP2B inhibitors, using the D iscovery S tudio 2.5 software, where they showed very interesting ability to intercalate the DNA–topoisomerase complex. Compounds 2a , 2c and 2f showed high docking score values (82.36% −29.98 kcal mol −1 for compound 2a , 78.18% −26.98 kcal mol −1 for compound 2c and 78.65, −28.11 kcal mol −1 for compound 2f ) and revealed the highest enzyme inhibition activity. The best hit compounds exhibited highly potent TOP2B inhibitors with submicromolar IC50 at 5 µM compared to the reference doxorubicin.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Md. Abu Saleh ◽  
Md. Solayman ◽  
Mohammad Mazharol Hoque ◽  
Mohammad A. K. Khan ◽  
Mohammed G. Sarwar ◽  
...  

In this study, mitoxantrone and its halogenated derivatives have been designed by density functional theory (DFT) to explore their structural and thermodynamical properties. The performance of these drugs was also evaluated to inhibit DNA topoisomerase type IIα(TOP2A) by molecular docking calculation. Noncovalent interactions play significant role in improving the performance of halogenated drugs. The combined quantum and molecular mechanics calculations revealed that CF3containing drug shows better preference in inhibiting the TOP2A compared to other modified drugs.


2019 ◽  
Vol 20 (15) ◽  
pp. 1587-1602 ◽  
Author(s):  
Harmeet Kaur ◽  
Sudhir Gahlawat ◽  
Jasbir Singh ◽  
Balasubramanian Narasimhan

Background: The diazenyl compounds (-N=N- linkage) have been reported to have antimicrobial activity. In modern drug discovery, the drug-receptor interactions are generally explored by the molecular docking studies. Materials and Methods: Three categories of diazenyl scaffolds were screened for the docking studies to explore the binding mechanism of interaction with various microbial targets. The diazenyl Schiff bases (SBN-20, SBN-21, SBN-25, SBN-33, SBN-39, SBN-40 and SBN-42), naphthol pharmacophore based diazenyl Schiff bases (NS-2, NS-8, NS-12, NS-15, NS-21, and NS-23), morpholine based diazenyl chalcones (MD-6, MD-9, MD-14, MD-16, MD-20, and MD-21) were docked against various bacterial and fungal proteins in comparison with different standard drugs. Further, the drug likeliness and ADME properties of these molecules were predicted by QikProp module of the Schrodinger software. Results: Most of the derivatives had shown less docking scores and binding energies towards bacterial proteins, such as dihydropteroate synthase (PDB:2VEG), glucosamine-6-phosphate synthase (PDB:2VF5), dihydrofolate reductase (PDB:3SRW) in comparison with the standard drugs. The naphthol based diazenyl Schiff bases NS-21 and NS-23 were predicted to act on the cytochrome P450 sterol 14-alpha-demethylase (CYP51) (PDB:5FSA) involved in sterol biosynthesis, an essential target for antifungal drugs. The derivative MD-6, NS-2, NS-21, and NS-23 had shown high docking scores against bacterial DNA topoisomerase (PDB:3TTZ) in comparison with the standard drug ciprofloxacin. Further, most of the synthesized derivatives had shown drug like characters. Conclusion: Hence, these compounds can be developed as novel antibacterial agents as potent DNA topoisomerase inhibitors and antifungal agents as CYP51 inhibitors.


2021 ◽  
Vol 22 (8) ◽  
pp. 3825
Author(s):  
Beata Tylińska ◽  
Benita Wiatrak ◽  
Żaneta Czyżnikowska ◽  
Aneta Cieśla-Niechwiadowicz ◽  
Elżbieta Gębarowska ◽  
...  

In the present paper, new pyrimidine derivatives were designed, synthesized and analyzed in terms of their anticancer properties. The tested compounds were evaluated in vitro for their antitumor activity. The cytotoxic effect on normal human dermal fibroblasts (NHDF) was also determined. According to the results, all the tested compounds exhibited inhibitory activity on the proliferation of all lines of cancer cells (colon adenocarcinoma (LoVo), resistant colon adenocarcinoma (LoVo/DX), breast cancer (MCF-7), lung cancer (A549), cervical cancer (HeLa), human leukemic lymphoblasts (CCRF-CEM) and human monocytic (THP-1)). In particular, their feature stronger influence on the activity of P-glycoprotein of cell cultures resistant to doxorubicin than doxorubicin. Tested compounds have more lipophilic character than doxorubicin, which determines their affinity for the molecular target and passive transport through biological membranes. Moreover, the inhibitory potential against topoisomerase II and DNA intercalating properties of synthesized compounds were analyzed via molecular docking.


2020 ◽  
Vol 16 (2) ◽  
pp. 176-189 ◽  
Author(s):  
Kaushal K. Sharma ◽  
Brijendra Singh ◽  
Somdutt Mujwar ◽  
Prakash S. Bisen

Introduction: Intermediate covalent complex of DNA-Topoisomerase II enzyme is the most promising target of the anticancer drugs to induce apoptosis in cancer cells. Currently, anticancer drug and chemotherapy are facing major challenges i.e., drug resistance, chemical instability and, dose-limiting side effect. Therefore, in this study, natural therapeutic agents (series of Ganoderic acids) were used for the molecular docking simulation against Human DNATopoisomerase II beta complex (PDB ID:3QX3). Methods: Molecular docking studies were performed on a 50 series of ganoderic acids reported in the NCBI-PubChem database and FDA approved anti-cancer drugs, to find out binding energy, an interacting residue at the active site of Human DNA-Topoisomerase II beta and compare with the molecular arrangements of the interacting residue of etoposide with the Human DNA topoisomerase II beta. The autodock 4.2 was used for the molecular docking and pharmacokinetic and toxicity studies were performed for the analysis of physicochemical properties and to check the toxicity effects. Discovery studio software was used for the visualization and analysis of docked pose. Results and Conclusion: Ganoderic acids (GS-1, A and DM) were found to be a more suitable competitor inhibitor among the ganoderic acid series with appropriate binding energy, pharmacokinetic profile and no toxicity effects. The interacting residue (Met782, DC-8, DC-11 and DA-12) shared a chemical resemblance with the interacting residue of etoposide present at the active site of human topoisomerase II beta receptor.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Ramalingam Srinivasan ◽  
Arumugam Aruna ◽  
Jong Suk Lee ◽  
Myunghee Kim ◽  
Muthugounder Subramaniam Shivakumar ◽  
...  

The present study aimed to evaluate the antioxidant and antiproliferative potential of ursolic acid and thujone isolated from leaves of Elaeagnus indica and Memecylon edule and their inhibitory effect on topoisomerase II using molecular docking study. The isolated ursolic acid and thujone were examined for different types of free radicals scavenging activity, the antiproliferative potential on U-937 and HT-60 cell lines by adopting standard methods. Further, these compounds were docked with the active site of the ATPase region of topoisomerase II. The findings of the research revealed that ursolic acid harbor strong antioxidant and antiproliferative capacity with low IC50 values than the thujone in all tested methods. Moreover, ursolic acid shows significant inhibition effect on topoisomerase II with a considerable docking score (−8.0312) and GLIDE energy (−51.86 kca/mol). The present outcome concludes that ursolic acid possesses significant antioxidant and antiproliferative potential, which can be used in the development of novel antioxidant and antiproliferative agents in the future.


Author(s):  
Jason R. Swedlow ◽  
Neil Osheroff ◽  
Tim Karr ◽  
John W. Sedat ◽  
David A. Agard

DNA topoisomerase II is an ATP-dependent double-stranded DNA strand-passing enzyme that is necessary for full condensation of chromosomes and for complete segregation of sister chromatids at mitosis in vivo and in vitro. Biochemical characterization of chromosomes or nuclei after extraction with high-salt or detergents and DNAse treatment showed that topoisomerase II was a major component of this remnant, termed the chromosome scaffold. The scaffold has been hypothesized to be the structural backbone of the chromosome, so the localization of topoisomerase II to die scaffold suggested that the enzyme might play a structural role in the chromosome. However, topoisomerase II has not been studied in nuclei or chromosomes in vivo. We have monitored the chromosomal distribution of topoisomerase II in vivo during mitosis in the Drosophila embryo. This embryo forms a multi-nucleated syncytial blastoderm early in its developmental cycle. During this time, the embryonic nuclei synchronously progress through 13 mitotic cycles, so this is an ideal system to follow nuclear and chromosomal dynamics.


Sign in / Sign up

Export Citation Format

Share Document