scholarly journals Oxidative Stability of Selected Edible Oils

Molecules ◽  
2018 ◽  
Vol 23 (7) ◽  
pp. 1746 ◽  
Author(s):  
Magdalena Maszewska ◽  
Anna Florowska ◽  
Elżbieta Dłużewska ◽  
Małgorzata Wroniak ◽  
Katarzyna Marciniak-Lukasiak ◽  
...  

The aim of the study was to examine and compare oxidative stability of refined (peanut, corn, rice bran, grapeseed, and rapeseed) oils. The oils were subject a Schaal Oven Test (temperature 63 ± 1 °C) and a Rancimat test (temperature 120 °C) and their stability was compared at the 1st and 12th month of storage. Changes in the peroxide (PV) and anisidine (AnV) values in the thermostat test were the fastest in rapeseed oil and grapeseed oil. The best quality was preserved by peanut and corn oils both in the first and the twelfth month of storage. The induction times for the rice bran, corn, peanut, and rapeseed oils were similar from 4.77 h to 5.02 h in the first month and from 3.22 h to 3.77 h in the twelfth month. The shortest induction times were determined for grapeseed oil: 2.4 h and 1.6 h, respectively. A decrease of oxidative stability of about 30% was found in all the oils after 12 months of storage. The PV of 10, determined in the thermostat and Rancimat tests, were achieved at the latest in corn oil and the fastest in rice bran oil.

Foods ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 334 ◽  
Author(s):  
Ruinan Yang ◽  
Li Xue ◽  
Liangxiao Zhang ◽  
Xuefang Wang ◽  
Xin Qi ◽  
...  

Phytosterols are important micronutrients in human diets. Evidence has shown that phytosterols play an essential role in the reduction of cholesterol in blood and therefore decrease cardiovascular morbidity. In this study, the content and composition of phytosterols in different kinds of vegetable oils were analyzed, and the total phytosterol intake and contribution of foods to intake were estimated based on consumption data. The results showed that the phytosterol contents of rice bran oil, corn oil, and rapeseed oil were higher than those of other vegetable oils and the intake of phytosterol in the Chinese diet was about 392.3 mg/day. The main sources of phytosterols were edible vegetable oils (46.3%), followed by cereals (38.9%), vegetables (9.2%), nuts (2.0%), fruits (1.5%), beans and bean products (1.4%), and tubers (0.8%). Among all vegetable oils, rapeseed oil was the main individual contributor to phytosterol intake (22.9%), especially for the southern residents of China.


2019 ◽  
Vol 76 ◽  
pp. 80-81
Author(s):  
M. Garrick ◽  
H. Spooner ◽  
J. Haffner ◽  
R. Hoffman

2015 ◽  
Vol 52 (10) ◽  
pp. 6520-6528 ◽  
Author(s):  
Amonrat Thanonkaew ◽  
Surapote Wongyai ◽  
Eric A. Decker ◽  
David J. McClements

2013 ◽  
Vol 22 (5) ◽  
pp. 1-6 ◽  
Author(s):  
Mi-Ja Kim ◽  
Jung Woo Park ◽  
Ji Young Kim ◽  
Kye Won Park ◽  
Sang-Jun Lee ◽  
...  

Author(s):  
Pravit Santiwattana ◽  
Sirirak Siramard

The objective of this study was to produce trans-free fat spread from rice bran oil and rice bran oil shortening blends to replace partially hydrogenated fats which contain high levels of trans fatty acids. The W/O emulsion of rice bran oil spread was prepared from blending of rice bran oil and rice bran oil shortening with the mass ratio of 40: 60 using PGPR as an emulsifier. Physicochemical properties, fatty acid compositions, thermal behaviors, micronutrients, sensory attributes and oxidative stability of rice bran oil spread were investigated and compared with commercial spread products. Results showed that physicochemical properties of the rice bran oil spread were similar to the commercial spread (B2). Trans fatty acids contents of the rice bran oil spread (0.2% TFAs) were much lower than the commercial spread (F2) produced from partially hydrogenated fat (4.9% TFAs). Thermal behaviors and SFC profile indicated good physical properties and spreadability of the rice bran oil spread which were comparable to the commercial spreads. Micronutrients in the rice bran oil spread were greater than those of commercial spread products. The rice bran oil spread had the highest overall preference scores compared to the two commercial fat spreads. In addition, the rice bran oil spread exhibited high oxidative stability. This study demonstrated that rice bran oil and rice bran oil shortening blends can be used as an alternative source of partially and fully hydrogenated fats as well as tropical oils to produce trans-free fat spreads with desirable properties.


2019 ◽  
Vol 9 (12) ◽  
pp. 2433 ◽  
Author(s):  
Shiyamala Duraipandian ◽  
Jan C. Petersen ◽  
Mikael Lassen

Adulteration of extra virgin olive oil (EVOO) with cheaper edible oils is of considerable concern in the olive oil industry. The potential of Raman spectroscopy combined with multivariate statistics has been investigated for evaluating the authenticity (or purity) and concentration of EVOO irrespective of it being adulterated with one or more adulterants. The adulterated oil samples were prepared by blending different concentrations of EVOO (10–100% v/v) randomly with cheaper edible oils such as corn, soybean and rapeseed oil. As a result, a Raman spectral database of oil samples (n = 214 spectra) was obtained from 11 binary mixtures (EVOO and rapeseed oil), 16 ternary mixtures (EVOO, rapeseed and corn oil) and 44 quaternary mixtures (EVOO, rapeseed, corn and soybean oil). Partial least squares (PLS) calibration models with 10-fold cross validation were constructed for binary, ternary and quaternary oil mixtures to determine the purity of spiked EVOO. The PLS model on the complex dataset (binary + ternary + quaternary) where the spectra obtained with different measurement parameters and sample conditions can able to determine the purity of spiked EVOO inspite of being blended with one or more cheaper oils. As a proof of concept, in this study, we used single batch of commercial oil bottles for estimating the purity of EVOO. The developed method is not only limited to EVOO, but can be applied to clean EVOO obtained from the production site and other types of food.


2016 ◽  
Vol 45 (10) ◽  
pp. 1513-1517
Author(s):  
Jeyeong Yeon ◽  
Seon Mi Lee ◽  
Jinwoo Yang ◽  
Jieun Kwak ◽  
Youngwha Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document