scholarly journals Novel Electrochemical Sensors Based on Cuprous Oxide-Electrochemically Reduced Graphene Oxide Nanocomposites Modified Electrode toward Sensitive Detection of Sunset Yellow

Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2130 ◽  
Author(s):  
Quanguo He ◽  
Jun Liu ◽  
Xiaopeng Liu ◽  
Yonghui Xia ◽  
Guangli Li ◽  
...  

Control and detection of sunset yellow is an utmost demanding issue, due to the presence of potential risks for human health if excessively consumed or added. Herein, cuprous oxide-electrochemically reduced graphene nanocomposite modified glassy carbon electrode (Cu2O-ErGO/GCE) was developed for the determination of sunset yellow. The Cu2O-ErGO/GCE was fabricated by drop-casting Cu2O-GO dispersion on the GCE surface following a potentiostatic reduction of graphene oxide (GO). Scanning electron microscope and X-ray powder diffractometer was used to characterize the morphology and microstructure of the modification materials, such as Cu2O nanoparticles and Cu2O-ErGO nanocomposites. The electrochemical behavior of sunset yellow on the bare GCE, ErGO/GCE, and Cu2O-ErGO/GCE were investigated by cyclic voltammetry and second-derivative linear sweep voltammetry, respectively. The analytical parameters (including pH value, sweep rate, and accumulation parameters) were explored systematically. The results show that the anodic peak currents of Cu2O-ErGO /GCE are 25-fold higher than that of the bare GCE, due to the synergistic enhancement effect between Cu2O nanoparticles and ErGO sheets. Under the optimum detection conditions, the anodic peak currents are well linear to the concentrations of sunset yellow, ranging from 2.0 × 10−8 mol/L to 2.0 × 10−5 mol/L and from 2.0 × 10−5 mol/L to 1.0 × 10−4 mol/L with a low limit of detection (S/N = 3, 6.0 × 10−9 mol/L). Moreover, Cu2O-ErGO/GCE was successfully used for the determination of sunset yellow in beverages and food with good recovery. This proposed Cu2O-ErGO/GCE has an attractive prospect applications on the determination of sunset yellow in diverse real samples.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Gen Liu ◽  
Wei Ma ◽  
Yan Luo ◽  
Deng-ming Sun ◽  
Shuang Shao

Poly(methylene blue) and electrochemically reduced graphene oxide composite film modified electrode (PMB-ERGO/GCE) was successfully fabricated by electropolymerization and was used for simultaneous determination of uric acid (UA) and xanthine (Xa). Based on the excellent electrocatalytic activity of PMB-ERGO/GCE, the electrochemical behaviors of UA and Xa were studied by cyclic voltammetry (CV) and square wave voltammetry (SWV). Two anodic sensitive peaks at 0.630 V (versus Ag/AgCl) for UA and 1.006 V (versus Ag/AgCl) for Xa were given by CV in pH 3.0 phosphate buffer. The calibration curves for UA and Xa were obtained in the range of 8.00 × 10−8~4.00 × 10−4 M and 1.00 × 10−7~4.00 × 10−4 M, respectively, by SWV. The detection limits for UA and Xa were3.00×10-8 M and5.00×10-8 M, respectively. Finally, the proposed method was applied to simultaneously determine UA and Xa in human urine with good selectivity and high sensitivity.


2021 ◽  
Vol 13 (1) ◽  
pp. 56-63
Author(s):  
Qiuqiu Wang ◽  
Juanhua Zhang ◽  
Yanbo Xu ◽  
Yingyi Wang ◽  
Liang Wu ◽  
...  

One-step electrochemically reduced graphene oxide with high surface area and improved electron transfer kinetics shows great performances in the determination of furfural in dairy milk.


2020 ◽  
Vol 187 (5) ◽  
Author(s):  
Jagriti Sethi ◽  
Michiel Van Bulck ◽  
Ahmed Suhail ◽  
Mina Safarzadeh ◽  
Ana Perez-Castillo ◽  
...  

AbstractA label-free biosensor is developed for the determination of plasma-based Aβ1–42 biomarker in Alzheimer’s disease (AD). The platform is based on highly conductive dual-layer of graphene and electrochemically reduced graphene oxide (rGO). The modification of dual-layer with 1-pyrenebutyric acid N-hydroxysuccinimide ester (Pyr-NHS) is achieved to facilitate immobilization of H31L21 antibody. The effect of these modifications were studied with morphological, spectral and electrochemical techniques. The response of the biosensor was evaluated using differential pulse voltammetry (DPV). The data was acquired at a working potential of ~ 180 mV and a scan rate of 50 mV s−1. A low limit of detection (LOD) of 2.398 pM is achieved over a wide linear range from 11 pM to 55 nM. The biosensor exhibits excellent specificity over Aβ1–40 and ApoE ε4 interfering species. Thus, it provides a viable tool for electrochemical determination of Aβ1–42. Spiked human and mice plasmas were used for the successful validation of the sensing platform in bio-fluidic samples. The results obtained from mice plasma analysis concurred with the immunohistochemistry (IHC) and magnetic resonance imaging (MRI) data obtained from brain analysis.


Sign in / Sign up

Export Citation Format

Share Document