scholarly journals Simultaneous Determination of Aesculin, Aesculetin, Fraxetin, Fraxin and Polydatin in Beagle Dog Plasma by UPLC-ESI-MS/MS and Its Application in a Pharmacokinetic Study after Oral Administration Extracts of Ledum palustre L.

Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2285 ◽  
Author(s):  
Zhibin Wang ◽  
Wenbo Zhu ◽  
Hua Liu ◽  
Gaosong Wu ◽  
Mengmeng Song ◽  
...  

A rapid, simple and sensitive ultra-performance liquid chromatography-electrospray-ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) method was developed and validated for the simultaneous determination of aesculin, aesculetin, fraxetin, fraxin and polydatin in beagle dog plasma for the first time. Plasma samples were pretreated by protein precipitation with methanol. Chromatographic separation was performed on an Acquity UPLC HSS T3 C18 column (2.1 mm × 100 mm, 1.8 μm) with gradient elution at a flow rate of 0.4 mL/min, using a mobile phase consisting of 0.1% formic acid (A) and acetonitrile (B). The analytes and IS were detected by multiple reaction monitoring (MRM) via negative ion mode with ion transitions of m/z 339.1–m/z 176.8 for aesculin, m/z 176.8–m/z 88.9 for aesculetin, m/z 206.8–m/z 192.1 for fraxetin, m/z 369.1–m/z 206.9 for fraxin, m/z 389.1–m/z 227.0 for polydatin and m/z 415.2–m/z 295.1 for puerarin. This method was validated according to the FDA guidelines and the results met the requirements of analysis. The calibration curves of analytes were linear with correlation coefficients more than 0.9980. The intra- and inter-day precisions were less than 15% and the accuracy was within ±15%. The maximum plasma concentration (Cmax) of aesculin, aesculetin, fraxetin, fraxin and polydatin was 46.75 ± 7.46, 209.9 ± 57.65, 369.7 ± 48.87, 67.04 ± 12.09 and 47.14 ± 12.04 ng/mL, respectively. The time to reach the maximum plasma concentration (Tmax) was 1.32 ± 0.38 h for aesculin, 1.03 ± 0.27 h for aesculetin, 0.94 ± 0.23 h for fraxetin, 0.83 ± 0.18 h for fraxin and 1.15 ± 0.15 h for polydatin. The results indicated that the absorption of aesculin might be slow in beagle dog plasma. This method was successfully applied for pharmacokinetics in beagle dog plasma after oral administration of the extracts of Ledum palustre L. at a dosage of 0.27 g/kg.

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Xiaoxv Dong ◽  
Wei Lan ◽  
Xingbin Yin ◽  
Chunjing Yang ◽  
Wenping Wang ◽  
...  

A simple and sensitive HPLC-UV method has been developed for the simultaneous determination of quercetin, luteolin, and apigenin in rat plasma after oral administration of Matricaria chamomilla L. extract. The flow rate was set at 1.0 ml/min and the detection wavelength was kept at 350 nm. The calibration curves were linear in the range of 0.11–11.36 μg/ml for quercetin, 0.11–11.20 μg/ml for luteolin, and 0.11–10.60 μg/ml for apigenin, respectively. The intraday and interday precisions (RSD) were less than 8.32 and 8.81%, respectively. The lower limits of quantification (LLOQ) of the three compounds were 0.11 μg/ml. The mean recoveries for quercetin, luteolin, and apigenin were 99.11, 95.62, and 95.21%, respectively. Stability studies demonstrated that the three compounds were stable in the preparation and analytical process. The maximum plasma concentration (Cmax) was 0.29 ± 0.06, 3.04 ± 0.60, and 0.42 ± 0.10 μg/ml, respectively. The time to reach the maximum plasma concentration (Tmax) was 0.79 ± 0.25, 0.42 ± 0.09, and 0.51 ± 0.13 h, respectively. The validated method was successfully applied to investigate the pharmacokinetics study of quercetin, luteolin, and apigenin in rat plasma after oral administration of M. chamomilla extract.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yang Wang ◽  
Ping Wang ◽  
Jun Xie ◽  
Zhaorui Yin ◽  
Xiaoyan Lin ◽  
...  

A rapid, specific, and sensitive analysis for simultaneous determination of fourteen components (daidzein, fermononetin, apigenin, luteolin, puerarin, ononin, calycosin-7-O-β-D-glucoside, tanshinol, rosmarinic acid, alkanoic acid, salvianolic acid B, berberine, jatrorrhizin, and palmatine) of Yigan Jiangzhi formula (YGJZF, a clinical experienced formula for damp-heat syndrome) in rat plasma was developed and validated using ultraperformance liquid chromatography coupled with mass spectrometry. Lower limit of quantitation ranged from 0.2–10.0 ng/mL, and the calibration curves showed good linearity over 500 times of measuring range. The validated method was successfully applied to the pharmacokinetics investigation of the fourteen compounds in rat plasma after oral administration of two different doses of YGJZF. Compared with the low-dose group of YGJZF, the high-dose group showed significant increase (P<0.01 or P<0.05) in maximum plasma concentration, maximum concentration time, and area under the plasma concentration-time curve and decrease (P<0.01 or P<0.05) in clearance of most of the fourteen analytes, which suggested that the bioavailability of these components could be enhanced by increasing dosage. The above results may provide useful information for cognizing the relationship between in vitro and in vivo data of the fourteen bioactive ingredients of YGJZF and further guiding rational clinical drug prescription.


Sign in / Sign up

Export Citation Format

Share Document