scholarly journals Herb–Drug Interaction Potential of Anti-Borreliae Effective Extracts from Uncaria tomentosa (Samento) and Otoba parvifolia (Banderol) Assessed In Vitro

Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 137 ◽  
Author(s):  
Johanna Weiss

Samento (extract from Uncaria tomentosa) and Banderol (extract from Otoba parvifolia) have been demonstrated to have anti-inflammatory and antimicrobial properties, e.g., against different morphological forms of Borrelia burgdorferi. However, there is hardly any data on the pharmacological safety of these two herbal medicines. This in vitro study aimed at scrutinizing their possible characteristics as perpetrators in pharmacokinetic herbal–drug interactions. Inhibition of cytochrome P450 enzymes (CYPs) was quantified by commercial kits and inhibition of drug transporters by use of fluorescent probe substrates. Induction was quantified by real-time RT-PCR and activation of pregnane x receptor (PXR) and aryl hydrocarbon receptor (AhR) by reporter gene assays. Organic anion transporting polypeptide 1B1 (OATP1B1) (IC50 = 0.49 ± 0.28%) and OATP1B3 (IC50 = 0.65 ± 0.29%) were potently inhibited by Banderol, but only weakly by Samento. CYP3A4 was inhibited about 40% at a Samento concentration of 1%. Samento significantly induced mRNA expression of CYP2J2, UGT1A3, UGT1A9, ABCB1, and SLCO1B1 and strongly activated PXR, but hardly AhR. In conclusion, the perpetrator profiles of Samento and Banderol for herb–drug interactions completely differ. Clinical studies are strongly recommended to clarify whether the effects observed in vitro are of clinical relevance.

2020 ◽  
Vol 75 (12) ◽  
pp. 3417-3424 ◽  
Author(s):  
Catherine Hodge ◽  
Fiona Marra ◽  
Catia Marzolini ◽  
Alison Boyle ◽  
Sara Gibbons ◽  
...  

Abstract As global health services respond to the coronavirus pandemic, many prescribers are turning to experimental drugs. This review aims to assess the risk of drug–drug interactions in the severely ill COVID-19 patient. Experimental therapies were identified by searching ClinicalTrials.gov for ‘COVID-19’, ‘2019-nCoV’, ‘2019 novel coronavirus’ and ‘SARS-CoV-2’. The last search was performed on 30 June 2020. Herbal medicines, blood-derived products and in vitro studies were excluded. We identified comorbidities by searching PubMed for the MeSH terms ‘COVID-19’, ‘Comorbidity’ and ‘Epidemiological Factors’. Potential drug–drug interactions were evaluated according to known pharmacokinetics, overlapping toxicities and QT risk. Drug–drug interactions were graded GREEN and YELLOW: no clinically significant interaction; AMBER: caution; RED: serious risk. A total of 2378 records were retrieved from ClinicalTrials.gov, which yielded 249 drugs that met inclusion criteria. Thirteen primary compounds were screened against 512 comedications. A full database of these interactions is available at www.covid19-druginteractions.org. Experimental therapies for COVID-19 present a risk of drug–drug interactions, with lopinavir/ritonavir (10% RED, 41% AMBER; mainly a perpetrator of pharmacokinetic interactions but also risk of QT prolongation particularly when given with concomitant drugs that can prolong QT), chloroquine and hydroxychloroquine (both 7% RED and 27% AMBER, victims of some interactions due to metabolic profile but also perpetrators of QT prolongation) posing the greatest risk. With management, these risks can be mitigated. We have published a drug–drug interaction resource to facilitate medication review for the critically ill patient.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qun Zhang ◽  
Zengqiang Qu ◽  
Yanqing Zhou ◽  
Jin Zhou ◽  
Junwei Yang ◽  
...  

Abstract Background Cornin is a commonly used herb in cardiology for its cardioprotective effect. The effect of herbs on the activity of cytochrome P450 enzymes (CYP450s) can induce adverse drug-drug interaction even treatment failure. Therefore, it is necessary to investigate the effect of cornin on the activity of CYP450s, which can provide more guidance for the clinical application of cornin. Methods Cornin (100 μM) was incubated with eight isoforms of CYP450s, including CYP1A2, 2A6, 3A4, 2C8, 2C9, 2C19, 2D6, and 2E1, in pooled human liver microsomes. The inhibition model and corresponding parameters were also investigated. Results Cornin exerted significant inhibitory effect on the activity of CYP3A4, 2C9, and 2E1 in a dose-dependent manner with the IC50 values of 9.20, 22.91, and 14.28 μM, respectively (p < 0.05). Cornin inhibited the activity of CYP3A4 non-competitively with the Ki value of 4.69 μM, while the inhibition of CYP2C9 and 2E1 by cornin was competitive with the Ki value of 11.31 and 6.54 μM, respectively. Additionally, the inhibition of CYP3A4 by cornin was found to be time-dependent with the KI/Kinact value of 6.40/0.055 min− 1·μM− 1. Conclusions The inhibitory effect of cornin on the activity of CYP3A4, 2C9, and 2E1 indicated the potential drug-drug interaction between cornin and drugs metabolized by these CYP450s, which needs further investigation and validation.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4383
Author(s):  
Barbara Lapinska ◽  
Aleksandra Szram ◽  
Beata Zarzycka ◽  
Janina Grzegorczyk ◽  
Louis Hardan ◽  
...  

Modifying the composition of dental restorative materials with antimicrobial agents might induce their antibacterial potential against cariogenic bacteria, e.g., S.mutans and L.acidophilus, as well as antifungal effect on C.albicans that are major oral pathogens. Essential oils (EOs) are widely known for antimicrobial activity and are successfully used in dental industry. The study aimed at evaluating antibacterial and antifungal activity of EOs and composite resin material (CR) modified with EO against oral pathogens. Ten EOs (i.e., anise, cinnamon, citronella, clove, geranium, lavender, limette, mint, rosemary thyme) were tested using agar diffusion method. Cinnamon and thyme EOs showed significantly highest antibacterial activity against S.mutans and L.acidophilus among all tested EOs. Anise and limette EOs showed no antibacterial activity against S.mutans. All tested EOs exhibited antifungal activity against C.albicans, whereas cinnamon EO showed significantly highest and limette EO significantly lowest activity. Next, 1, 2 or 5 µL of cinnamon EO was introduced into 2 g of CR and microbiologically tested. The modified CR showed higher antimicrobial activity in comparison to unmodified one. CR containing 2 µL of EO showed the best antimicrobial properties against S.mutans and C.albicans, while CR modified with 1 µL of EO showed the best antimicrobial properties against L.acidophilus.


Author(s):  
Hetal Ashvin Kumar Mavani ◽  
In Meei Tew ◽  
Lishen Wong ◽  
Hsu Zenn Yew ◽  
Alida Mahyuddin ◽  
...  

Sodium hypochlorite (NaOCl), an effective endodontic irrigant against Enterococcus faecalis (EF), is harmful to periapical tissues. Natural pineapple-orange eco-enzymes (M-EE) and papaya eco-enzyme (P-EE) could be potential alternatives. This study aimed to assess the antimicrobial efficacy of M-EE and P-EE at different concentrations and fermentation periods against EF, compared to 2.5% NaOCl. Fermented M-EE and P-EE (3 and 6 months) at various concentrations were mixed with EF in a 96-well plate incubated for 24 h anaerobically. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of M-EE and P-EE were determined via EF growth observation. EF inhibition was quantitatively measured and compared between different irrigants using the one-way analysis of variance (ANOVA), and different fermentation periods using the independent-samples T-test. M-EE and P-EE showed MIC at 50% and MBC at 100% concentrations. There was no significant difference in antimicrobial effect when comparing M-EE and P-EE at 50% and 100% to 2.5% NaOCl. P-EE at 6 months fermentation exhibited higher EF inhibition compared to 3 months at concentrations of 25% (p = 0.017) and 0.78% (p = 0.009). The antimicrobial properties of M-EE and P-EE, at both 100% and 50% concentrations, are comparable to 2.5% NaOCl. They could therefore be potential alternative endodontic irrigants, but further studies are required.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Kelly Bleasby ◽  
Kerry L. Fillgrove ◽  
Robert Houle ◽  
Bing Lu ◽  
Jairam Palamanda ◽  
...  

ABSTRACT Doravirine is a novel nonnucleoside reverse transcriptase inhibitor for the treatment of human immunodeficiency virus type 1 infection. In vitro studies were conducted to assess the potential for drug interactions with doravirine via major drug-metabolizing enzymes and transporters. Kinetic studies confirmed that cytochrome P450 3A (CYP3A) plays a major role in the metabolism of doravirine, with ∼20-fold-higher catalytic efficiency for CYP3A4 versus CYP3A5. Doravirine was not a substrate of breast cancer resistance protein (BCRP) and likely not a substrate of organic anion transporting polypeptide 1B1 (OATP1B1) or OATP1B3. Doravirine was not a reversible inhibitor of major CYP enzymes (CYP1A2, -2B6, -2C8, -2C9, -2C19, -2D6, and -3A4) or of UGT1A1, nor was it a time-dependent inhibitor of CYP3A4. No induction of CYP1A2 or -2B6 was observed in cultured human hepatocytes; small increases in CYP3A4 mRNA (≤20%) were reported at doravirine concentrations of ≥10 μM but with no corresponding increase in enzyme activity. In vitro transport studies indicated a low potential for interactions with substrates of BCRP, P-glycoprotein, OATP1B1 and OATP1B3, the bile salt extrusion pump (BSEP), organic anion transporter 1 (OAT1) and OAT3, organic cation transporter 2 (OCT2), and multidrug and toxin extrusion 1 (MATE1) and MATE2K proteins. In summary, these in vitro findings indicate that CYP3A4 and CYP3A5 mediate the metabolism of doravirine, although with different catalytic efficiencies. Clinical trials reported elsewhere confirm that doravirine is subject to drug-drug interactions (DDIs) via CYP3A inhibitors and inducers, but they support the notion that DDIs (either direction) are unlikely via other major drug-metabolizing enzymes and transporters.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4589 ◽  
Author(s):  
Sunjoo Kim ◽  
Dong Kyun Kim ◽  
Yongho Shin ◽  
Ji-Hyeon Jeon ◽  
Im-Sook Song ◽  
...  

AB-FUBINACA, a synthetic indazole carboxamide cannabinoid, has been used worldwide as a new psychoactive substance. Because drug abusers take various drugs concomitantly, it is necessary to explore potential AB-FUBINACA-induced drug–drug interactions caused by modulation of drug-metabolizing enzymes and transporters. In this study, the inhibitory effects of AB-FUBINACA on eight major human cytochrome P450s (CYPs) and six uridine 5′-diphospho-glucuronosyltransferases (UGTs) of human liver microsomes, and on eight clinically important transport activities including organic cation transporters (OCT)1 and OCT2, organic anion transporters (OAT)1 and OAT3, organic anion transporting polypeptide transporters (OATP)1B1 and OATP1B3, P-glycoprotein, and breast cancer resistance protein (BCRP) in transporter-overexpressing cells were investigated. AB-FUBINACA inhibited CYP2B6-mediated bupropion hydroxylation via mixed inhibition with Ki value of 15.0 µM and competitively inhibited CYP2C8-catalyzed amodiaquine N-de-ethylation, CYP2C9-catalyzed diclofenac 4′-hydroxylation, CYP2C19-catalyzed [S]-mephenytoin 4′-hydroxylation, and CYP2D6-catalyzed bufuralol 1′-hydroxylation with Ki values of 19.9, 13.1, 6.3, and 20.8 µM, respectively. AB-FUBINACA inhibited OCT2-mediated MPP+ uptake via mixed inhibition (Ki, 54.2 µM) and competitively inhibited OATP1B1-mediated estrone-3-sulfate uptake (Ki, 94.4 µM). However, AB-FUBINACA did not significantly inhibit CYP1A2, CYP2A6, CYP3A4, UGT1A1, UGT1A3, UGT1A4, UGT1A6, or UGT2B7 enzyme activities at concentrations up to 100 µM. AB-FUBINACA did not significantly inhibit the transport activities of OCT1, OAT1/3, OATP1B3, P-glycoprotein, or BCRP at concentrations up to 250 μM. As the pharmacokinetics of AB-FUBINACA in humans and animals remain unknown, it is necessary to clinically evaluate potential in vivo pharmacokinetic drug–drug interactions induced by AB-FUBINACA-mediated inhibition of CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, OCT2, and OATP1B1 activities.


Sign in / Sign up

Export Citation Format

Share Document