scholarly journals Structure Identification of ViceninII Extracted from Dendrobium officinale and the Reversal of TGF-β1-Induced Epithelial–Mesenchymal Transition in Lung Adenocarcinoma Cells through TGF-β/Smad and PI3K/Akt/mTOR Signaling Pathways

Molecules ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 144 ◽  
Author(s):  
Yingyi Luo ◽  
Zhiyao Ren ◽  
Biaoyan Du ◽  
Shangping Xing ◽  
Shaowei Huang ◽  
...  

ViceninII is a naturally flavonoid glycoside extracted from Dendrobium officinale, a precious Chinese traditional herb, has been proven to be valuable for cancer treatment. Transforming growth factor-β1 (TGF-β1), promotes the induction of epithelial–mesenchymal transition (EMT), a process involved in the metastasis of cells that leads to enhanced migration and invasion. However, there is no previously evidence that ViceninII has an inhibitory effect on cancer metastasis, specifically on the TGF-β1-induced EMT process in lung adenocarcinoma cells. In this experiment, we used UV, ESIMS, and NMR to identify the structure of ViceninII.A549 and H1299 cells were treated with TGF-β1 in the absence and presence of ViceninII, and subsequent migration and invasion were measured by wound-healing and transwell assays. The protein localization and expressions were detected by immunofluorescence and Western blotting. The results indicated that TGF-β1 induced spindle-shaped changes, increased migration and invasion, and upregulated or downregulated the relative expression of EMT biomarkers. Meanwhile, these alterations were significantly inhibited when co-treated with ViceninII and inhibitors LY294002 and SB431542. In conclusion, ViceninII inhibited TGF-β1-induced EMT via the deactivation of TGF-β/Smad and PI3K/Akt/mTOR signaling pathways.This is the first time that the anti-metastatic effects of ViceninII have been demonstrated, and their molecular mechanisms provided.

Author(s):  
Weili Min ◽  
Liangzhang Sun ◽  
Burong Li ◽  
Xiao Gao ◽  
Shuqun Zhang ◽  
...  

EMT confers increased metastatic potential and the resistance to chemotherapies to cancer cells. However, the precise mechanisms of EMT-related chemotherapy resistance remain unclear. c-Src-mediated Caspase-8 phosphorylation essential for EMT in lung adenocarcinoma cell lines preferentially occurs in cells with the mesenchymal phenotype, resulting in chemoresistance to cisplatin plus paclitaxel inpatients with resectable lung adenocarcinoma and a significantly worse 5-year PFS. Cisplatin killed lung adenocarcinoma cells regardless of Caspase-8. Paclitaxel-triggered necroptosis in lung adenocarcinoma cells was dependent on the phosphorylation or deficiency of Caspase-8, during which FADD interacted with RIPK1 to activateRIPK1/RIPK3/MLKL signaling axis. Accompanied with c-Src-mediated Caspase-8 phosphorylation to trigger EMT, a novel lncRNA named lncCRLA was markedly upregulated and inhibited RIPK1-induced necroptosis by impairing RIPK1-RIPK3 interaction via binding to the intermediate domain of RIPK1. Dasatinib mitigated c-Src-mediated phosphorylation of Caspase-8-induced EMT and enhanced necroptosis in mesenchymal-like lung adenocarcinoma cells treated with paclitaxel, while c-FLIP knockdown predominantly sensitized the mesenchymal-like lung adenocarcinoma cells to paclitaxel+dasatinib. c-Src-Caspase-8 interaction initiates EMT and chemoresistance viaCaspase-8 phosphorylation and lncCRLA expression, to which the dasatinib/paclitaxel liposome+siFLIP regimen was lethal.


Author(s):  
Venkateswarareddy Nallajennugari ◽  
Sankar Pajaniradje ◽  
Srividya Subramanian ◽  
Suhail Ahmad Bhat ◽  
Parthasarathi D ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document