scholarly journals Chemical Constituents with Inhibitory Activity of NO Production from a Wild Edible Mushroom, Russula vinosa Lindbl, May Be Its Nutritional Ingredients

Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1305 ◽  
Author(s):  
Guodong Zhang ◽  
Huawei Geng ◽  
Chunxia Zhao ◽  
Fangyi Li ◽  
Zhen-Fa Li ◽  
...  

Russula vinosa Lindbl is a wild edible mushroom that is usually used for original material of food and soup and has rich nutritional value. What are the nutritional ingredients? In order to answer this question, we investigated the chemical constituents of this wild functional food. Six new compounds (1–6), together with nine known ones (7–15), were isolated from R. vinosa. The six new compounds were named as vinosane (1), rulepidadione C (2), (24E)-3,4-seco-cucurbita-4,24-diene-26,29-dioic acid-3-methyl ester (3), (24E)-3,4-seco-cucurbita-4,24-diene-26-oic acid-3-ethyl ester (4), (24E)-3β-hydroxycucurbita-5,24-diene-26,29-dioic acid (5), and (2S,3S,4R,2′R)-2-(2′-hydroxydocosanoylamino)eicosane-1,3,4-triol (6). Their structures were determined based on spectroscopic methods including HR-ESI-MS, 1D, and 2D NMR. Moreover, a cell counting kit-8 (CCK-8 kit) was used to screen for the cytotoxicity of compounds 1–5 and 7–13 on mouse macrophage RAW 264.7 cells. The results showed that compounds 1–5 and 7–13 had no obvious cytotoxicity. In addition, the inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)-activated mouse macrophage RAW 264.7 cells were evaluated. Compounds 1, 3, 4, 7, 12, and 13 showed moderate inhibitory activity on NO production.

2012 ◽  
Vol 7 (11) ◽  
pp. 1934578X1200701
Author(s):  
Chihiro Ito ◽  
Tomiyasu Murata ◽  
Hugh T.-W. Tan ◽  
Norio Kaneda ◽  
Hiroshi Furukawa ◽  
...  

Study of the chemical constituents of the stems of Derris trifoliata Lour. (Leguminosae) collected in Singapore led to the isolation and identification of three known and two new rotenoid derivatives. The new derivatives, named derrisfolin A (1) and B (2), inhibited nitric oxide production in murine macrophage-like RAW 264.7 cells stimulated with interferon-γ and lipopolysaccharide.


Separations ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 129
Author(s):  
Uoorakkottil Ilyas ◽  
Deepshikha P. Katare ◽  
Punnoth Poonkuzhi Naseef ◽  
Mohamed Saheer Kuruniyan ◽  
Muhammed Elayadeth-Meethal ◽  
...  

Phyllanthus species (Family Euphorbiaceae) has been used in traditional medicine of several countries as a cure for numerous diseases, including jaundice and hepatitis. This study is an attempt to evaluate the immunomodulatory activity of various fractions, column eluents of ethyl acetate fraction, and their polyphenols. Phyllanthus maderaspatensis were standardized using high-performance liquid chromatography to identify and quantify polyphenols, and purification of polyphenols was carried out using vacuum liquid chromatography. Subsequently, we tested various fractions, column eluents of ethyl acetate fraction, and polyphenols in vitro to assess their impact on nitric oxide (NO) production in LPS-stimulated mouse macrophage RAW 264.7 cells. The ethyl acetate fraction (100 μg mL−1) had a more significant stimulatory effect on LPS-stimulated NO production by the RAW 264.7 cells. We found that the ethyl acetate fraction contains a high amount of catechin, quercetin, ellagic acid kaempferol, and rutin, which are responsible for immunomodulation. The ethyl acetate fraction at concentrations of 25 and 50 μg mL−1 had a significant inhibitory effect and 100 μg mL−1 had a more significant stimulatory effect when compared with the LPS control. The percentage of inhibition by LPS control ranged from zero percentage, kaempferol ranged from 45.4% at 50 μg mL−1 to 41.88% at 100 μg mL−1, catechin ranged from 50% at 50 μg mL−1 to 35.28% at 100 μg mL−1, rutin ranged from 36.2% at 50 μg mL−1 to 47.44% at 100 μg mL−1, gallic acid ranged from 28.4% at 50 μg mL−1 to 50.9% at 100 μg mL−1, ellagic acid ranged from 45.12% at 50 μg mL−1 to 38.64% at 100 μg mL−1, and purified quercetin ranged from 26.2% at 50 μg mL−1to 45.48% at 100 μg mL−1. As NO plays an important role in the immune function, polyphenols’ treatment could modulate several aspects of host defense mechanisms owing to the stimulation of the inducible nitric oxide synthase.


Planta Medica ◽  
2021 ◽  
Author(s):  
Hongzhi Song ◽  
Jinni Tan ◽  
Ruijing Ma ◽  
Edward J Kennelly ◽  
Qingang Tan

AbstractCaulis Trachelospermi, the stems with leaves of Trachelospermum jasminoides, is a well-known herbal drug of the Apocynaceae family recorded in the Chinese pharmacopeia and used for the treatment of inflammation-related diseases by ethnic minorities of China. The mechanism of anti-inflammatory activity and responsible constituents of T. jasminoides have not been well elucidated in previous studies. Preliminary investigation showed that both the water and the ethyl ester extracts of T. jasminoides exhibited potent inhibitory activity on nitric oxide (NO) production using lipopolysaccharide (LPS)-stimulated murine macrophages. Phytochemical investigation on these extracts afforded 23 compounds, including three new compounds (1 –3) identified on the basis of spectroscopic and mass spectrometric data. Anti-inflammatory bioassay showed that compounds 17, 18, 22, and 23 inhibited significantly the production of NO in a concentration-dependent manner. Further studies indicated that compound 23 inhibited significantly TNF-α and IL-6 produced by LPS-stimulated RAW 264.7 cells with good selectivity, as well as protein expression of iNOS in RAW 264.7 cells. These chemical constituents may contribute to the anti-inflammatory potential of T. jasminoides.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Wei Xiang ◽  
Guo-Dong Zhang ◽  
Fang-Yi Li ◽  
Teng-long Wang ◽  
Tong-Chuan Suo ◽  
...  

A new compound, named arillatanoside E, which was elucidated as 3-O-β-D-glucopyranosyl presenegenin 28-O-β-D-xylopyranosyl-(1 ⟶ 3)-β-D-xylopyranosyl-(1 ⟶ 4)-α-L-rhamnopyranosyl-(1 ⟶ 2)-(4-O-acetyl)-β-D-fucopyranosyl ester, along with 11 known compounds was isolated from the ethanolic extract of the roots of Polygala arillata. The 11 known compounds were identified as oleanolic acid (2), 3′-E-3,4,5-trimethoxy cinnamoyl-6-benzoyl sucrose (3), trans-ferulic acid (4), trans-feruloyl-glucoside (5), feruloyl-glucoside (6), 2,4,6-trimethoxy-1-O-β-D-glycoside (7), 3-methoxy-4-hydroxybenzoic acid (8), monopentadecanoin (9), sinapic acid (10), p-hydroxybenzaldehyde (11), and palmitic acid (12). Among them, seven isolated compounds 1, 2, 4, 5, 7, 8, and 10 exhibited little cytotoxic activity on macrophage RAW 264.7 cells. Then, the inhibitory effects of 7 isolates on nitric oxide (NO) production in lipopolysaccharide-activated macrophages were evaluated. As a result, 3 compounds have significant anti-inflammatory activity, and they were arillatanoside E (1), oleanolic acid (2), and 2,4,6-trimethoxy-1-O-β-D-glycoside (7).


2019 ◽  
Vol 7 (22) ◽  
pp. 3737-3740
Author(s):  
Novycha Auliafendri ◽  
Rosidah Rosidah ◽  
Yuandani Yuandani ◽  
Sri Suryani ◽  
Denny Satria

AIM: The objective of this study was to evaluate the inhibitory activity of Picria fel-terrae Lour on Nitric Oxide production toward RAW 264.7 cells. METHODS: The extraction was obtained by maceration method using n-hexane, ethyl acetate and ethanol solvents and then nitric oxide (NO) production was obtained using Griess reagent. RESULTS: Extract of Picria fel-terrae Lour herbs can reduce the NO production toward RAW 264.7 cells with induced by lipopolysaccharide has obtained nitric concentrations 12.5 and 25 μg/mL from n-hexane extract (72.50 ± 4.51 and 10.42 ± 1.82), ethyl acetate extract: (88.33 ± 6.51 and 30.83 ± 6.86), ethanol extract: (75.00 ± 1.91 and 22.08 ± 2.53). CONCLUSION: n-hexane extract of Picria fel-terrae Lour Herbs has a high potential to reduce the NO production in LPS-stimulated RAW 264.7 cells compared to ethyl acetate and ethanol extracts of Picria fel-terrae Lour Herbs.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2393 ◽  
Author(s):  
Jian Ma ◽  
Bixuan Cao ◽  
Chengbin Liu ◽  
Peipei Guan ◽  
Yu Mu ◽  
...  

Six new metabolites, actinofuranones D-I (compounds 1–6), were isolated together with three known compounds—JBIR-108 (7), E-975 (8), and E-492 (9)—from a fermentation broth of Streptomyces gramineus derived from the lichen Leptogium trichophorum. The structures of the new compounds 1–6 were established using comprehensive NMR spectroscopic data analysis, as well as UV, IR, and MS data. The anti-inflammatory activity of these isolated compounds were evaluated by examining their ability to inhibit nitric oxide (NO) production in LPS-stimulated RAW 264.7 macrophage cells. Compounds 4, 5, 8, and 9 attenuated the production of NO due to the suppression of the expression of nitric oxide synthase (iNOS) in LPS-induced RAW 264.7 cells. Moreover, 4, 5, 8, and 9 also inhibited LPS-induced release of proinflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α).


2019 ◽  
Vol 57 (2) ◽  
pp. 200-212
Author(s):  
Aurachorn Inkanuwat ◽  
Romteera Sukaboon ◽  
Aphichart Karnchanatat ◽  
Papassara Sangtanoo ◽  
Tanatorn Saisavoey ◽  
...  

Nitric oxide (NO) plays a key role in the pathogenesis of inflammation and has been implicated in endotoxin-induced tissue injury. Chicken feather meal is a rich source of amino acids that may serve as a peptide hydrolysate to inhibit NO activity. Anti-inflammatory hydrolysates of chicken feather meal were prepared and fractionated into five samples based on molecular mass. The smallest fraction (<0.65 kDa) exhibited the highest NO inhibitory activity without cytotoxicity towards macrophage RAW 264.7 cells. Further subfractions were sufficient to obtain amino acid sequences by Q-TOF LC-MS/MS ESI analysis. Of these, the SNPSVAGVR (885.97 Da) peptide and its corresponding pure synthetic peptide have inhibitory activity against NO production by RAW 264.7 cells (IC50=(55.2±0.2) mM) without cytotoxicity. Reverse transcriptase polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR results revealed that the peptide of the obtained fraction reduced transcript expression levels of the pro-inflammatory cytokines iNOS, TNF-α, COX-2 and IL-6 in lipopolysaccharide-stimulated RAW 264.7 cells. These results suggest that the peptides derived from the chicken feather meal protein could potentially be used as a promising ingredient in functional foods or nutraceuticals against inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document