scholarly journals Antibacterial Activity and Molecular Docking Studies of a Selected Series of Hydroxy-3-arylcoumarins

Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2815 ◽  
Author(s):  
Pisano ◽  
Kumar ◽  
Medda ◽  
Gatto ◽  
Pal ◽  
...  

Antibiotic resistance is one of the main public health concerns of this century. This resistance is also associated with oxidative stress, which could contribute to the selection of resistant bacterial strains. Bearing this in mind, and considering that flavonoid compounds are well known for displaying both activities, we investigated a series of hydroxy-3-arylcoumarins with structural features of flavonoids for their antibacterial activity against different bacterial strains. Active compounds showed selectivity against the studied Gram-positive bacteria compared to Gram-negative bacteria. 5,7-Dihydroxy-3-phenylcoumarin (compound 8) displayed the best antibacterial activity against Staphylococcus aureus and Bacillus cereus with minimum inhibitory concentrations (MICs) of 11 g/mL, followed by Staphylococcus aureus (MRSA strain) and Listeria monocytogenes with MICs of 22 and 44 g/mL, respectively. Moreover, molecular docking studies performed on the most active compounds against Staphylococcus aureus tyrosyl-tRNA synthetase and topoisomerase II DNA gyrase revealed the potential binding mode of the ligands to the site of the appropriate targets. Preliminary structure–activity relationship studies showed that the antibacterial activity can be modulated by the presence of the 3-phenyl ring and by the position of the hydroxyl groups at the coumarin scaffold.

2020 ◽  
Vol 16 (3) ◽  
pp. 281-294
Author(s):  
Bhawna Chopra ◽  
Ashwani K. Dhingra ◽  
Deo N. Prasad ◽  
Sakshi Bhardwaj ◽  
Sonal Dubey

Background: Piperine or piperic acid was isolated from fruits of Piper nigrum and had been reported as pharmacological valuable bioactive constituents. Keeping in view, a series of piperic acid-based N heterocyclic’s derivatives were synthesized and evaluated for antibacterial activity. All these prepared ligands were docked to study the molecular interactions and binding affinities against the protein PDB ID: 5 CDP. Objective: To meet the real need of newer antibacterials, we designed and synthesized scaffolds with good antibacterial activity. The obtained antibacterials have been validated in terms of ligand-protein interaction and thus prove to build up as good drug candidates. Methods: Antibacterial activity of the compounds were carried out against bacterial strains; three Grampositive and three Gram-negative bacterial strains using agar well diffusion method. In silico molecular docking studies were carried out using Glide (grid-based ligand docking) program incorporated in the Schrödinger molecular modeling package by Maestro 11.0. Results: Compounds BC 28, BC 32, and BC 33 exhibits antibacterial activity along with Glide docking score of -8.580, -9.753 kcal/mol, and -8.813 kcal/mol, respectively. Docking studies explained hydrogen bonding, pi-pi, and hydrophobic interactions with amino acid residues which explain the binding affinity of the most docked ligand with protein. Conclusion: In the present study, substituted piperic acid was synthesized and evaluated as antibacterial compared with standard drug ciprofloxacin and results interpret that having nitrogen as heteroatom in the heterocyclic nucleus found to be more potent than the standard drug ciprofloxacin. On comparing, substitution with electron-donating groups generates excellent antibacterial potential against the bacterial strains. It was also proved that having substitution with electron-donating groups on meta and para position with triazoline ring system exhibits greater potential while compounds which have a meta- electron-donating substituent showed lesser activity with thiazole nucleus. In addition, structure-based activities of the prepared analogs were discussed under Structure-Activity Relationship (SAR) section.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1964 ◽  
Author(s):  
Volodymyr Horishny ◽  
Victor Kartsev ◽  
Athina Geronikaki ◽  
Vasyl Matiychuk ◽  
Anthi Petrou ◽  
...  

Background: Infectious diseases symbolize a global consequential strain on public health security and impact on the socio-economic stability all over the world. The increasing resistance to the current antimicrobial treatment has resulted in crucial need for the discovery and development of novel entity for the infectious treatment with different modes of action that could target both sensitive and resistant strains. Methods: Compounds were synthesized using classical methods of organic synthesis. Results: All 20 synthesized compounds showed antibacterial activity against eight Gram-positive and Gram-negative bacterial species. It should be mentioned that all compounds exhibited better antibacterial potency than ampicillin against all bacteria tested. Furthermore, 18 compounds appeared to be more potent than streptomycin against Staphylococcus aureus, Enterobacter cloacae, Pseudomonas aeruginosa, Listeria monocytogenes, and Escherichia coli. Three the most active compounds 4h, 5b, and 5g appeared to be more potent against MRSA than ampicillin, while streptomycin did not show any bactericidal activity. All three compounds displayed better activity also against resistant strains P. aeruginosa and E. coli than ampicillin. Furthermore, all compounds were able to inhibit biofilm formation 2- to 4-times more than both reference drugs. Compounds were evaluated also for their antifungal activity against eight species. The evaluation revealed that all compounds exhibited antifungal activity better than the reference drugs bifonazole and ketoconazole. Molecular docking studies on antibacterial and antifungal targets were performed in order to elucidate the mechanism of antibacterial activity of synthesized compounds. Conclusion: All tested compounds showed good antibacterial and antifungal activity better than that of reference drugs and three the most active compounds could consider as lead compounds for the development of new more potent agents.


RSC Advances ◽  
2014 ◽  
Vol 4 (79) ◽  
pp. 41778-41783 ◽  
Author(s):  
Ayyavu Thirunarayanan ◽  
Sebastian Raja ◽  
Gunasekaran Mohanraj ◽  
Perumal Rajakumar

Antibacterial activity against Shigella dysenteriae, Staphylococcus aureus and Serratia marcescen was studied with S-BINOL based triazole dendrimers 1, 2 and 3 with m-terphenyl surface units. Supported by molecular docking studies, the activity dendrimer 2 was comparable to that of streptomycin.


Author(s):  
Sowmya Suri ◽  
Rumana Waseem ◽  
Seshagiri Bandi ◽  
Sania Shaik

A 3D model of Cyclin-dependent kinase 5 (CDK5) (Accession Number: Q543f6) is generated based on crystal structure of P. falciparum PFPK5-indirubin-5-sulphonate ligand complex (PDB ID: 1V0O) at 2.30 Å resolution was used as template. Protein-ligand interaction studies were performed with flavonoids to explore structural features and binding mechanism of flavonoids as CDK5 (Cyclin-dependent kinase 5) inhibitors. The modelled structure was selected on the basis of least modeler objective function. The model was validated by PROCHECK. The predicted 3D model is reliable with 93.0% of amino acid residues in core region of the Ramachandran plot. Molecular docking studies with flavonoids viz., Diosmetin, Eriodictyol, Fortuneletin, Apigenin, Ayanin, Baicalein, Chrysoeriol and Chrysosplenol-D with modelled protein indicate that Diosmetin is the best inhibitor containing docking score of -8.23 kcal/mol. Cys83, Lys89, Asp84. The compound Diosmetin shows interactions with Cys83, Lys89, and Asp84.


Author(s):  
Vivek B. Panchabhai ◽  
Santosh R. Butle ◽  
Parag G. Ingole

We report a novel scaffold of N-substituted 2-phenylpyrido(2,3-d)pyrimidine derivatives with potent antibacterial activity by targeting this biotin carboxylase enzyme. The series of eighteen N-substituted 2-phenylpyrido(2,3-d)pyrimidine derivatives were synthesized, characterized and further molecular docking studied to determine the mode of binding and energy changes with the crystal structure of biotin carboxylase (PDB ID: 2V58) was employed as the receptor with compounds 6a-r as ligands. The results obtained from the simulation were obtained in the form of dock score; these values represent the minimum energies. Compounds 6d, 6l, 6n, 6o, 6r and 6i showed formation of hydrogen bonds with the active site residues and van Der Walls interactions with the biotin carboxylase enzyme in their molecular docking studies. This compound can be studied further and developed into a potential antibacterial lead molecule.


Sign in / Sign up

Export Citation Format

Share Document