scholarly journals Rapid Characterization and Discovery of Chemical Markers for Discrimination of Xanthii Fructus by Gas Chromatography Coupled to Mass Spectrometry

Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4079
Author(s):  
Kim ◽  
Jung ◽  
Jeon ◽  
Hwang ◽  
Ahn

Xanthii Fructus (XF) is known as a medicinal plant. It has been used as a traditional medicine because of its high biological efficacy. However, there have been few comprehensive studies on the specific chemical composition of the plant and consequently, the information is lacking for the mechanism of the natural product metabolites in humans. In this study, an efficient analytical method to characterize and discriminate two species of Xanthii Fructus (Xanthium canadense Mill. and Xanthium sibiricum Patrin ex Widder) was established. Volatile organic compounds (VOCs), polar metabolites, and fatty acids were classified by integrated sample preparation, which allowed a broad range for the detection of metabolites simultaneously. Gas chromatography-mass spectrometry (GC-MS) followed by a multivariate statistical analysis was employed to characterize the chemical compositions and subsequently to discriminate between the two species. The results demonstrate that the two species possess obviously diverse chemical characteristics of three different classifications, and discriminant analysis was successfully applied to a number of chemical markers that could be used for the discrimination of the two species. Additional quantitative results for the selected chemical markers consistently showed significant differences between the two species.

2020 ◽  
Vol 69 (9-10) ◽  
pp. 515-520
Author(s):  
Igor Jerković ◽  
Marina Kranjac ◽  
Marina Zekić ◽  
Ani Radonić ◽  
Zvonimir Marijanović

Reviewed in brief are the selected results of the application of headspace solid-phase microextraction as a preparative approach for gas chromatography – mass spectrometry (HS-SPME/GC-MS) for natural organic compounds research at the University of Split, Faculty of Chemistry and Technology. A wide variety of headspace compounds from different natural sources has been identified: lower aliphatic compounds (e.g., C5- and C6-compounds), aromatic compounds, monoterpenes (e.g., linalool derivatives (oxides, anhydro-oxides, epoxides), hotrienol), sesquiterpenes (e.g., eudesmol isomers, hydrocarbons), and C9- and C13-norisoprenoids (e.g., 3,4-dihydro-3-oxoedulan, 4-oxoisophorone, trans-β-damascenone). These compounds are important phytochemicals as flavour/fragrance compounds, chemical markers of the botanical origin or others (e.g., allelochemicals, pheromones, or acaricide residue).


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2877
Author(s):  
Soo Jean Park ◽  
Stefano G. De Faveri ◽  
Jodie Cheesman ◽  
Benjamin L. Hanssen ◽  
Donald N. S. Cameron ◽  
...  

Passiflora maliformis is an introduced plant in Australia but its flowers are known to attract the native Jarvis’s fruit fly, Bactrocera jarvisi (Tryon). The present study identifies and quantifies likely attractant(s) of male B. jarvisi in P. maliformis flowers. The chemical compositions of the inner and outer coronal filaments, anther, stigma, ovary, sepal, and petal of P. maliformis were separately extracted with ethanol and analyzed using gas chromatography-mass spectrometry (GC-MS). Polyisoprenoid lipid precursors, fatty acids and their derivatives, and phenylpropanoids were detected in P. maliformis flowers. Phenylpropanoids included raspberry ketone, cuelure, zingerone, and zingerol, although compositions varied markedly amongst the flower parts. P. maliformis flowers were open for less than one day, and the amounts of some of the compounds decreased throughout the day. The attraction of male B. jarvisi to P. maliformis flowers is most readily explained by the presence of zingerone in these flowers.


Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 276 ◽  
Author(s):  
Boggarapu Praphulla Chandra ◽  
Crystal D. McClure ◽  
JoAnne Mulligan ◽  
Daniel A. Jaffe

Forest fire smoke influence in urban areas is relatively easy to detect at high concentrations but more challenging to detect at low concentrations. In this study, we present a simplified method that can reliably quantify smoke tracers in an urban environment at relatively low cost and complexity. For this purpose, we used dual-bed thermal desorption tubes with an auto-sampler to collect continuous samples of volatile organic compounds (VOCs). We present the validation and evaluation of this approach using thermal desorption gas chromatography mass spectrometry (TD-GC-MS) to detect VOCs at ppt to ppb concentrations. To evaluate the method, we tested stability during storage, interferences (e.g., water and O3), and reproducibility for reactive and short-lived VOCs such as acetonitrile (a specific chemical tracer for biomass burning), acetone, n-pentane, isopentane, benzene, toluene, furan, acrolein, 2-butanone, 2,3-butanedione, methacrolein, 2,5- dimethylfuran, and furfural. The results demonstrate that these VOCs can be quantified reproducibly with a total uncertainty of ≤30% between the collection and analysis, and with storage times of up to 15 days. Calibration experiments performed over a dynamic range of 10–150 ng loaded on to each thermal desorption tube at different relative humidity showed excellent linearity (r2 ≥ 0.90). We utilized this method during the summer 2019 National Oceanic and Atmospheric Administration (NOAA) Fire Influence on Regional to Global Environments Experiment–Air Quality (FIREX-AQ) intensive experiment at the Boise ground site. The results of this field study demonstrate the method’s applicability for ambient VOC speciation to identify forest fire smoke in urban areas.


2018 ◽  
Vol 13 (8) ◽  
pp. 1934578X1801300 ◽  
Author(s):  
Armando A. Durant-Archibold ◽  
Noris Salazar Allen ◽  
Anette Garrido ◽  
Jose Gudiño Ledezma ◽  
Mahabir P. Gupta

We report for the first time the chemical composition of volatile components (VOCs) of two subspecies, D. hirsuta subsp. hirsuta and D. hirsuta subsp. nepalensis, of the liverwort Dumortiera hirsuta from Panama by using headspace-solid phase microextraction-gas chromatography-mass spectrometry in order to assess distinguishing markers between the two species. Forty VOCs were identified in total for both subspecies. Of these, 34 are reported for the first time in D. hirsuta. Furthermore, both subspecies showed clear differences in the type and amount of VOCs. The major compounds in D. hirsuta subsp. hirsuta were α-gurjunene, β-selinene, α-guaiene, α-humulene and β-caryophyllene; while in D. hirsuta subsp. nepalensis were ledene, α-gurjunene, β-caryophyllene and α-guaiene, respectively. Two oxygenated sesquiterpenes, globulol and nerolidol, could be considered as possible distinguishing chemical markers between these two subspecies. We conclude that both morphotypes of D. hirsuta are chemically different.


RSC Advances ◽  
2015 ◽  
Vol 5 (107) ◽  
pp. 87806-87817 ◽  
Author(s):  
Shidong Lv ◽  
Yuanshuang Wu ◽  
Jifu Wei ◽  
Ming Lian ◽  
Chen Wang ◽  
...  

A method was developed based on head-space solid phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) combined with multivariate statistical methods to assess volatile profiles in different types of Pu-erh teas.


2004 ◽  
Vol 1 (3) ◽  
pp. 301-303 ◽  
Author(s):  
Betül Demirci ◽  
Dietrich H. Paper ◽  
Fatih Demirci ◽  
K. Hüsnü Can Başer ◽  
Gerhard Franz

The essential oil ofBetula pendulaRoth. buds was obtained using both hydrodistillation and microdistillation techniques and their chemical compositions were analyzed using both gas chromatography (GC) and gas chromatography–mass spectrometry (GC-MS). Overall, more than 50 compounds were identified representing 80% and 92% for hydrodistillation and microdistillation, respectively. The main components (by hydrodistillation and microdistillation, respectively) found were α-copaene (12% and 10%), germacrene D (11% and 18%) and δ-cadinene (11% and 15%) in the analyzed essential oils. The microdistillation technique proved to be a useful tool and compliant alternative when compared to hydrodistillation.


Sign in / Sign up

Export Citation Format

Share Document