scholarly journals Lipase-Catalyzed Chemoselective Ester Hydrolysis of Biomimetically Coupled Aryls for the Synthesis of Unsymmetric Biphenyl Esters

Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4272
Author(s):  
Janna Ehlert ◽  
Jenny Kronemann ◽  
Nadine Zumbrägel ◽  
Matthias Preller

Lipases are among the most frequently used biocatalysts in organic synthesis, allowing numerous environmentally friendly and inexpensive chemical transformations. Here, we present a biomimetic strategy based on iron(III)-catalyzed oxidative coupling and selective ester monohydrolysis using lipases for the synthesis of unsymmetric biphenyl-based esters under mild conditions. The diverse class of biphenyl esters is of pharmaceutical and technical relevance. We explored the potency of a series of nine different lipases of bacterial, fungal, and mammalian origin on their catalytic activities to cleave biphenyl esters, and optimized the reaction conditions, in terms of reaction time, temperature, pH, organic solvent, and water–organic solvent ratios, to improve the chemoselectivity, and hence control the ratio of unsymmetric versus symmetric products. Elevated temperature and increased DMSO content led to an almost exclusive monohydrolysis by the four lipases Candida rugosa lipase (CRL), Mucor miehei lipase (MML), Rhizopus niveus lipase (RNL), and Pseudomonas fluorescens lipase (PFL). The study was complemented by in silico binding predictions to rationalize the observed differences in efficacies of the lipases to convert biphenyl esters. The optimized reaction conditions were transferred to the preparative scale with high yields, underlining the potential of the presented biomimetic approach as an alternative strategy to the commonly used transition metal-based strategies for the synthesis of diverse biphenyl esters.

2004 ◽  
Vol 10 (5-6) ◽  
pp. 358-366 ◽  
Author(s):  
Bimo Ario Tejo ◽  
Abu Bakar Salleh ◽  
Juergen Pleiss

2014 ◽  
Vol 68 (8) ◽  
Author(s):  
Hamzeh Kiyani ◽  
Fatemeh Ghorbani

Abstract2-Amino-4-aryl-4H-benzo[h]chromenes and 3-amino-1-aryl-1H-benzo[f]chromenes were prepared by treating cyano-methylene compounds (malononitrile or ethyl cyanoacetate), substituted aromatic aldehydes, and naphtholic compounds in the presence of potassium phthalimide as a green, mild, efficient, and commercially available organocatalyst in aqueous media. The procedure was readily conducted and affords remarkable advantages such as safety, short reaction times, environmentally benign milder reaction conditions, no organic solvent required, and high yields.


2017 ◽  
Vol 12 ◽  
pp. 90-95 ◽  
Author(s):  
B.H. Rosa ◽  
G.S. Silva ◽  
G.J.A. Conceição ◽  
R.A. Carvalho ◽  
E. Aguiar-Oliveira ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 848
Author(s):  
Shang Wang ◽  
Yan Xu ◽  
Xiao-Wei Yu

Water content is an important factor in lipase-catalyzed reactions in organic media but is frequently ignored in the study of lipases by molecular dynamics (MD) simulation. In this study, Candida antarctica lipase B, Candida rugosa lipase and Rhizopus chinensis lipase were used as research models to explore the mechanisms of lipase in micro-aqueous organic solvent (MAOS) media. MD simulations indicated that lipases in MAOS systems showed unique conformations distinguished from those seen in non-aqueous organic solvent systems. The position of water molecules aggregated on the protein surface in MAOS media is the major determinant of the unique conformations of lipases and particularly impacts the distribution of hydrophilic and hydrophobic amino acids on the lipase surface. Additionally, two maxima were observed in the water-lipase radial distribution function in MAOS systems, implying the formation of two water shells around lipase in these systems. The energy landscapes of lipases along solvent accessible areas of catalytic residues and the minimum energy path indicated the dynamic open states of lipases in MAOS systems differ from those in other solvent environments. This study confirmed the necessity of considering the influence of the microenvironment on MD simulations of lipase-catalyzed reactions in organic media.


2010 ◽  
Vol 4 (1) ◽  
pp. 47-55 ◽  
Author(s):  
Derya Kahveci ◽  
Mia Falkeborg ◽  
Sandra Gregersen ◽  
Xuebing Xu

Upgrading of farmed salmon oil obtained from by-products was carried out by lipase-catalyzed hydrolysis to increase omega 3 polyunsaturated fatty acids (PUFA) content. The lipases tested were from Penicillium camembertii (PC), Rhizomucor javanicus (RJ), Rhizopus niveus (RN), Rhizopus delemar (RD), Burkholderia cepacia (BC), Rhizopus oryzae (RO), Candida rugosa (CR) and Rhizomucor miehei (RM). The lipases from PC, RJ and RN had lower hydrolysis degrees (HDs) compared to the rest of the lipases. The lipase from CR had the highest HD after 24 h (91.89%). Moreover, CR lipase was the most effective one in concentrating omega 3 PUFA. The final value was increased from 13.77% to 27.81% (wt%). The changes in omega 3 PUFA content were significantly different among the lipases although the HD values were similar at the end of the reactions, which was believed to be caused by the substrate specificities of the lipases. The investigation of the relationship between HD and hydrolysis resistant value (HRV) for eicosapentaenoic acid (EPA, 20:5), docosahexaenoic acid (DHA, 22:6) and oleic acid (OA, 18:1) revealed that the fatty acid (FA) selectivity of the lipases were significantly different. CR lipase had the highest preference for hydrolyzing OA selectively over EPA and DHA. The reaction conditions, i.e. presence of surfactants, sonication, buffer-to-oil ratio, enzyme load, did not affect the selectivity. Investigation of the reaction conditions revealed that it was possible to obtain ~2.15-fold of the original omega 3 PUFA content by hydrolysis of salmon oil in the presence of CR lipase (4%, based on oil weight) with a bufferto- oil ratio of 2:1 (v/v) at 37oC for 4 h.


2020 ◽  
Vol 20 (3) ◽  
pp. 1899-1906 ◽  
Author(s):  
Xueying Liu ◽  
Dongsheng He ◽  
Xiaojuan Li ◽  
Yan Deng ◽  
Jing Deng ◽  
...  

Candida rugosa lipase was immobilized in this study using CaCl2/CMC nanoparticles that yielded a lipase loading capacity of 127 mg/g, with better thermal stability and activity of 91.8%. The hydrolysis of racemic 2-phenylpropionic acid isopropyl ester by free and immobilized Candida rugosa lipase was investigated in the mixed organic-solvent composed of isooctane and methyl tert-butyl ether (9.5:0.5, V/V). The optimal conditions were 35 °C and pH 7.5 for free Candida rugosa lipase hydrolysis. We obtained (S)-2-phenylpropionic acid with 44.85% conversion, 95.75% enantiomeric excess and enantiomeric ratio of 112. The CaCl2/CMC nanoparticles immobilized Candida rugosa lipase possesses high enantioselectivity, with E = 237 at 40 °C and pH 7.5. It was efficiently reusable in four cycles and appropriately enhanced enantioselectivity within 120–240.


Sign in / Sign up

Export Citation Format

Share Document