scholarly journals Nanoliposomes and Tocosomes as Multifunctional Nanocarriers for the Encapsulation of Nutraceutical and Dietary Molecules

Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 638 ◽  
Author(s):  
Ali Zarrabi ◽  
Mandana Alipoor Amro Abadi ◽  
Sepideh Khorasani ◽  
M.-Reza Mohammadabadi ◽  
Aniseh Jamshidi ◽  
...  

Nanoscale lipid bilayers, or nanoliposomes, are generally spherical vesicles formed by the dispersion of phospholipid molecules in a water-based medium by energy input. The other nanoscale object discussed in this entry, i.e., tocosome, is a recently introduced bioactive carrier made mainly from tocopheryl phosphates. Due to their bi-compartmental structure, which consists of lipidic and aqueous compartments, these nanocarriers are capable of carrying hydrophilic and hydrophobic material separately or simultaneously. Nanoliposomes and tocosomes are able to provide protection and release of sensitive food-grade bioactive materials in a sustained manner. They are being utilized for the encapsulation of different types of bioactive materials (such as drugs, vaccines, antimicrobials, antioxidants, minerals and preservatives), for the enrichment and fortification of different food and nutraceutical formulations and manufacturing of functional products. However, a number of issues unique to the nutraceutical and food industry must first be resolved before these applications can completely become a reality. Considering the potentials and promises of these colloidal carrier systems, the present article reviews various aspects of nanoliposomes, in comparison with tocosomes, including the ingredients used in their manufacture, formation mechanisms and issues pertaining to their application in the formulation of health promoting dietary supplements and functional food products.

2013 ◽  
Vol 19 (S4) ◽  
pp. 107-108 ◽  
Author(s):  
A.A. Duarte ◽  
M. Raposo

Liposomes or lipid vesicles are self-closed structures formed by one or several concentric lipid bilayers with an aqueous phase inside, which may incorporate almost any molecule, namely proteins, hormones, enzymes, antibiotics, anticancer agents, antifungical agents, gene transfer agents, DNA, and whole viruses. Scientific evidences prove that unprotected liposomes containing drugs are easily released from the endoplasmic reticulum of the cell. To increase the vesicles lifetime and to activate a controlled drug release with an external stimulus, the vesicles immobilization on a surface and the factors which create conditions to the liposome rupture have to be analyzed. A number of studies have identified some of the critical stages of vesicle adsorption (adhesion), fusion, deformation, rupture, and spreading of the lipid bilayer. Nevertheless, the formation mechanisms of well-controlled continuous supported bilayers or adsorption of whole liposomes are still not fully understood. As yet it was demonstrated that a controlled adsorption of vesicles containing a small fraction of charged lipids occurs without rupture and their subsequent embedding in polyelectrolyte multilayer (PEM) films, meaning vesicles may be immobilized in an intact or slightly deformed state, which can act as drug reservoirs. Moreover, depending on the nature of the physicochemical conditions of the vesicle solution and the substrate surface, a flat lipid bilayer can be formed, known as supported lipid bilayers, which can incorporate membrane proteins and keep the native dynamics of the lipid bilayer mimicking a biological membrane. In this study, a layer of 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) (DPPG) liposomes adsorbed onto PEMs cushions based on poly(ethylenimine) (PEI), poly(sodium 4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) polyelectrolytes was analyzed by atomic force microscopy (AFM) technique in non-contact mode and quartz crystal microbalance (QCM).Sequential heterostructures of Si/PEI(PSS/PAH)4 and Si/PAH, also designated cushions, were prepared onto silicon substrates using the layer-by-layer (LbL) technique with polyelectrolyte solutions of PEI, PSS and PAH of monomeric concentrations of 0.01M. Topographic images of 1×1μm2 area of Si/PAH/DPPG (Figure 1 a), and Si/PEI(PSS/PAH)4/DPPG (Figure 1 b) LbL films were acquired by AFM. The root mean square roughness (RMS) calculated from topographies data are listed in table I. As shown, when a DPPG layer is adsorbed onto Si/PAH the RMS keeps an approximately equal value meaning that the liposome disrupted and spread onto the surface forming a planar lipid bilayer. But when a DPPG layer is adsorbed onto Si/PEI(PSS/PAH)4 the RMS value doubled, indicating that the structural integrity of the liposomes is maintained, even though there has been any deformation during adsorption. The adsorbed amount of the two PEMs and DPPG-liposomes layers was measured using a QCM and is displayed in table I. The DPPG adsorbed amount obtained on the PAH cushion was approximately equal to a planar lipid bilayer, while the adsorption onto PEI(PSS/PAH)4 was higher than the predicted for a planar lipid bilayer. This behavior suggests that the DPPG liposomes on the second PEM remained intact during adsorption. Both confirm the AFM results. Therefore we conclude that the initial roughness of the surface is a primordial factor to determine the adsorption or not of intact vesicles.The authors acknowledge the “Fundação para a Ciência e Tecnologia” (FCT-MEC) by the post-graduate scholarship SFRH/BD/62229/2009 and the “Plurianual” funding.


2005 ◽  
Vol 11 (S03) ◽  
pp. 44-47 ◽  
Author(s):  
G. D. Tavares ◽  
M. C. de Oliveira ◽  
J. M. C. Vilela ◽  
M. S. Andrade

Biological membranes are constituted of lipids organized as a two dimensional bilayer supporting peripheral and integral proteins, providing a barrier between the inside and the outside of a cell [1]. Similar membranes can be prepared from the lipid mixtures forming liposomes. The liposomes are multi or unilamellar spherical vesicles in which an aqueous volume is enclosed and can be used to encapsulate some drugs [2]. In order to better expose the details of their structure, these membranes are generally deposited on the surface of a flat substrate. These supported planar lipid membranes can also provide a model system for investigating the properties and functions of the complex cell membrane and membrane mediated processes such as recognition events and biological signal transduction. Various methods have been used to create artificial lipid membranes supported on a solid surface, being the most used the Langmuir-Blodgett monolayers formation [3], the vesicle fusion or liposome adsorption [4] and the solution spreading [5].


2021 ◽  
Vol 11 (2) ◽  
pp. 204-208
Author(s):  
D Raju

Solid lipid nanoparticles (SLNs) considered as an alternative vehicle for the enhanced oral absorption of drugs, and also to enhance therapeutic effectiveness after oral administration. Pharmacodynamic activity of drug is mainly describes the pharmacological and therapeutic activity of drug to the biological system. Lipid nanoparticles especially SLNs made of physiological inert lipid molecules and helps the lymphatic transport. Numerous literatures is available on the effect of SLNs and other colloidal carrier systems on the pharmacokinetic activity of poorly bioavailable drugs, to improve their oral absorption and also respective mechanisms for the improved oral bioavailability. However, very few literatures is reported on the pharmacodynamic activity and the effect of dose on the pharmacodynamic activity. Therefore, the current review is mainly dealing with the effect of SLNs on the pharmacodynamic activity discussed.   Keywords: Oral absorption, solid lipid nanoparticles, lymphatic transport, pharmacokinetics, pharmacodynamics.


2019 ◽  
Vol 26 (24) ◽  
pp. 4681-4696 ◽  
Author(s):  
Carmelo Puglia ◽  
Rosario Pignatello ◽  
Virginia Fuochi ◽  
Pio Maria Furneri ◽  
Maria Rosaria Lauro ◽  
...  

Phytochemicals represent an important class of bioactive compounds characterized by significant health benefits. Notwithstanding these important features, their potential therapeutic properties suffer from poor water solubility and membrane permeability limiting their approach to nutraceutical and pharmaceutical applications. Lipid nanoparticles are well known carrier systems endowed with high biodegradation and an extraordinary biocompatible chemical nature, successfully used as platform for advanced delivery of many active compounds, including the oral, topical and systemic routes. This article is aimed at reviewing the last ten years of studies about the application of lipid nanoparticles in active natural compounds reporting examples and advantages of these colloidal carrier systems.


2011 ◽  
Vol 12 (4) ◽  
pp. 579-597 ◽  
Author(s):  
Prem N. Gupta ◽  
Suresh P. Vyas

2011 ◽  
Vol 404 (1-2) ◽  
pp. 159-168 ◽  
Author(s):  
Alexandra S.B. Goebel ◽  
Reinhard H.H. Neubert ◽  
Johannes Wohlrab

2005 ◽  
Vol 57 (4) ◽  
pp. 423-427 ◽  
Author(s):  
Melkamu Getie ◽  
Johannes Wohlrab ◽  
Reinhard H. H. Neubert

Sign in / Sign up

Export Citation Format

Share Document