scholarly journals Selenium and Zinc Biofortification of Pleurotus eryngii Mycelium and Fruiting Bodies as a Tool for Controlling Their Biological Activity

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 889 ◽  
Author(s):  
Piotr Zięba ◽  
Katarzyna Kała ◽  
Anna Włodarczyk ◽  
Agnieszka Szewczyk ◽  
Edward Kunicki ◽  
...  

Pleurotus eryngii (DC:Fr.) Quel. is a cultivated mushroom of high culinary value and medicinal properties. Mycelium of P. eryngii is characterized by the ability of effective bio-elements absorption from growth media so it could be biofortified with trace elements with a functional activity in the human body. In this study, the ability of P. eryngii mycelia from in vitro cultures as well as fruiting bodies were investigated in terms of their effectiveness in zinc and selenium accumulation. The effect of Se and Zn biofortification on productivity, chemical compounds, and bio-elements content of P. eryngii was determined as well. To enhance Se and Zn content in P. eryngii fruiting bodies and mycelia, substrates were supplemented with sodium selenite, at a concentration of 50 mg L−1, zinc sulfate, and zinc hydro-aspartate at a concentration of 87.2 and 100.0 mg L−1, respectively. Mentioned Zn concentrations contained the same amount of zinc(II) ions, namely 20 mg L−1. The content of organic compounds include phenolic compounds and lovastatin, which were determined by a high-performance liquid chromatography with diode-array detector (HPLC-DAD) and reverse phase high-performance liquid chromatography (RP-HPLC) method with UV detection. The ability of P. eryngii to accumulate zinc and selenium from the culture medium was demonstrated. The degree of accumulation of zinc turned out to be different depending on the type of salt used. The present study also showed that conducting mycelium of P. eryngii in in vitro culture, with a higher content of zinc ions, can result in obtaining the materials with better antioxidant ability. The results of this study can be used to develop the composition of growing media, which ensures the production of biomass with the desired composition of elements.

Author(s):  
Mariola Dreger ◽  
Katarzyna Seidler-Łożykowska ◽  
Milena Szalata ◽  
Artur Adamczak ◽  
Karolina Wielgus

AbstractThe purpose of the study was to evaluate Chamerion angustifolium (L.) Holub genotypes for preliminary selection and further breeding programs aimed at obtaining a suitable industrial form for the pharmaceutical applications. Clonally propagated plants representing 10 genotypes of Ch. angustifolium were regenerated under in vitro conditions, hardened and planted in the field. Studies included an evaluation of shoot proliferation, phytochemical assessment of in vitro and ex vitro plants as well as investigations of intraspecies variability regarding four phenological stages: vegetative, beginning of blooming, full blooming, and green fruit phases. Quantitative and qualitative analyses of bioactive compounds were performed using high-performance liquid chromatography coupled with diode array detector and tandem mass spectrometer (HPLC–DAD–MS/MS) and high-performance liquid chromatography (HPLC) methods. The efficiency of shoot multiplication varied between genotypes from 8.12 to 21.48 shoots per explant. A high reproduction rate (> 20 shoots per explant) was recorded for four lines (PL_45, PL_44, PL_58, DE_2). Plants grown in vitro synthesized oenothein B (11.2–22.3 mg g−1 DW) and caffeic acid derivatives. Plants harvested from field contained the full spectrum of polyphenols characteristic for this species, and oenothein B and quercetin 3-O-glucuronide were the most abundant. The maximal content of oenothein B was determined in the vegetative phase of fireweed, while some flavonoids were found in the highest amount in full blooming phase. The results of analysis of variance indicated significant differences among genotypes in oenothein B, 3-O-caffeoylquinic acid and flavonoids accumulation in four phenological phases. PL_44 plants were characterized by high content of oenothein B and quercetin 3-O-glucuronide as well as a relatively high level of other flavonoids. Based on our phytochemical and micropropagation studies, PL_44 genotype was the best candidate for early selection and further breeding programs.


Author(s):  
Yan Xiong ◽  
Yong-Hong Liu ◽  
Jian-Sha Li ◽  
Yu-Ying Zhang ◽  
Jing Zhang ◽  
...  

Abstract A simple high performance liquid chromatography (HPLC) method was developed and validated for the determination of coumarin-3-carboxylic acid analogues (C3AA) in rat plasma and a preliminary study on pharmacokinetics. Ferulic acid (FA) was used as the internal standard substance, and coumarin-3-carboxylic acid (C3A) was used as a substitute for quantitative C3AA. After protein precipitation with methanol, the satisfactory separation was achieved on an ODS2 column when the temperature was maintained at 30 ± 2°C. The correlation coefficient r in the C3A linear equation is equal to 0.9990. Pharmacokinetic parameters for t1/2, Tmax, Cmax, area under the curve (AUC)0-t, average residence time (MRT), apparent volume of distribution (V z/F) and clearance (Cl/F) were 1.89 ± 0.03 h, 0.39 ± 0.14 h, 1.81 ± 0.10 g· mL−1 ·h, 7.88 ± 0.24 g·mL−1·h, 3.23 ± 0.14 h, 0.43 ± 0.03 (mg·kg−1)·(g·mL−1)−1·h−1, respectively. The high performance liquid chromatography-photo diode array detector (HPLC-PDA) method established in this study can be used to separate and determine the content of C3AA in plasma of rats after 60% ethanol extraction by gavage. The plasma concentration-time curve and pharmacokinetic parameters reflect the absorption of C3AA in rat blood after oral administration to some extent.


Antioxidants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 488
Author(s):  
Agnieszka Szopa ◽  
Michał Dziurka ◽  
Sebastian Granica ◽  
Marta Klimek-Szczykutowicz ◽  
Paweł Kubica ◽  
...  

Schisandra rubriflora is a dioecious, underestimated medicinal plant species known from traditional Chinese medicine. The present study was aimed at characterising the polyphenolic profile composition and the related antioxidant capacity of S. rubriflora fruit, stem and leaf and in vitro microshoot culture extracts. Separate analyses of material from female and male specimens were carried out. This study was specifically aimed at detailed characterisation of the contribution of phenolic compounds to overall antioxidant activity using ultra-high-performance liquid chromatography with a photodiode array detector coupled to electrospray ionization ion trap mass spectrometry (UHPLC-DAD-ESI-MS3) and a high-performance liquid chromatography-diode array detector (HPLC-DAD). Using UHPLC-DAD-ESI-MS3, twenty-seven phenolic compounds from among phenolic acids and flavonoids were identified. Concentrations of three phenolic acids (neochlorogenic, chlorogenic and cryptochlorogenic acids) and eight flavonoids (hyperoside, rutoside, isoquercitrin, guaijaverin, trifolin, quercetin, kaempferol, and isorhamnetin) were determined using HPLC-DAD using reference standards. The highest total phenolic content was confirmed for the stem and leaf extracts collected in spring. The contents of phenolic compounds of in vitro biomasses were comparable to that in the fruit extracts. The methanolic extracts from the studied plant materials were evaluated for their antioxidant properties using various in vitro assays, namely free radicals scavenging estimation using 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), ferric-reducing antioxidant power (FRAP) and cupric-reducing antioxidant capacity (CUPRAC) as well as QUick, Easy, New, CHEap, and Reproducible CUPRAC (QUENCHER-CUPRAC) assays. A close relationship between the content of polyphenolic compounds in S. rubriflora and their antioxidant potential has been documented.


Separations ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 141
Author(s):  
Khalid Iqbal ◽  
Aliki Milioudi ◽  
Elena Haro Martínez ◽  
Sebastian Georg Wicha

Pharmacokinetic/pharmacodynamic (PKPD) studies of anti-infectives are frequently performed in in vitro infection models where accurate quantification of antibiotic concentrations in bacterial growth media is crucial to establish PK/PD relationships. Here, a sensitive and rapid high-performance liquid chromatography (HPLC) method was developed to quantify tedizolid (TDZ) in the bacterial growth medium Mueller-Hinton broth (MHB). Matrix components were separated by direct protein precipitation with methanol (1:1). The chromatographic separation was carried out in a Dionex Ultimate 3000 HPLC system using an Accucore® C-18 RPMS HPLC column (2.6 µm, 100 × 2.1 mm) using isocratic elution with 25% acetonitrile and 75% of 0.1% formic acid. The lower limit of quantification was 0.03 mg/L when measured at 300 nm. Following relevant European Medicine Agency guidelines, the method was successfully validated for linearity, selectivity, recovery, inter- and intra-day precision, and accuracy and stability. When applied to in vitro PKPD studies, the method successfully quantified a range of TDZ concentration (Cmin, 0.09-Cmax, 0.65 mg/L) in MHB. The analyzed concentrations were in line with the planned PK profiles. The application of the developed method to quantify TDZ in MHB in in vitro PKPD studies is warranted.


2020 ◽  
Vol 18 (4) ◽  
pp. 294-309
Author(s):  
R. B. Yadav ◽  
B. Kumar ◽  
A. Vats ◽  
S. N. Singh ◽  
D. P. Pathak ◽  
...  

Pharmacological activity of Aloe vera is known for hundreds of years, but a precise and well-established characterization method for all kinds of pharmaceutical formulations is still a challenging task. In the present study, a simple, user- friendly, sensitive, precise, accurate, robust and reproducible method has been developed based on reverse phase-high performance liquid chromatography (RP-HPLC). The RP-HPLC method has been developed, standardized and validated utilizing the Aloe marker compounds viz., Aloin A, Acemannan and Aloe-emodin that is present in various Aloe vera varieties. The total polyphenolic content (TPC) and total flavonoid content (TFC) were estimated spectrophotometrically and an in-vitro antioxidant study was also performed to standardize the potential of Aloe vera using assays viz. DPPH (2,2- diphenyl-1-picrylhydrazyl radical scavenging), NO (nitric oxide) scavenging potential, FRAP (ferric reducing antioxidant power) and TAC (total antioxidant capacity). Simultaneously, tocopherol acetate was also estimated in commercially manufactured pharmaceutical products with the help of the previously standardized HPLC method in our laboratory. Separation of the singular active ingredient of Aloe vera was achieved by using an isocratic mode of acetonitrile and water (70:30 v/v) by using a reversed-phase C18 column as stationary phase in a high-performance liquid-chromatography system employing photodiode array detector (PDA plus detector) with a flow rate of 1.0 ml/min. The detection limit of active compound of Aloe species was found to be in the range of 0.00020 to 0.00051 µgL-1 (20 µL injection of each for five times). The quantitative method of Aloe vera extracts standardized vis-à-vis both with peel (AL-P) and without peel (AL-WP) form gives robust, precise (% RSD 1.13-3.84) and accurate results. This method is suitable for the detection of major pharmacologically active compounds present in Aloe vera-based pharmaceuticals and nutraceuticals.


2021 ◽  
Vol 20 (11) ◽  
pp. 2371-2379
Author(s):  
Yanqin Zhu ◽  
Qinhong Yin ◽  
Yaling Yang

Purpose: To develop, validate and compare two chromatographic methods - high performance liquid chromatography with diode array detector ((HPLC-DAD) and high performance liquid chromatography with ultraviolet detection (UPLC-UV) for the effective analysis of polyphenols in Moringa oleifera leaves.Methods: HPLC-DAD and UPLC-UV methods were applied for the accurate determination of eleven major polyphenols in Moringa oleifera leaves. The chromatographic conditions of the eleven polyphenols was determined on two C18 column by gradient elution with 0.5 % phosphoric acid solution -acetonitrile as the eluate, and at a flow rate of 1.0 and 0.5 mL/min for HPLC-DAD and UPLC-UV methods, respectively. Detector parameter of UPLC-UV was fixed at 203 nm. The assay methods were validated systematically.Results: The instrumental methods (HPLC-DAD and UPLC-UV) had good linearity, precision,repeatability and recovery. For both methods, quantification limits of UPLC-UV (0.057 - 0.363 μg/mL) were lower than those of UPLC-UV (0.094 - 1.532 μg/mL). The UPLC method with a shorter running time and more sensitive detection was applied in comparing to the HPLC method. After optimization and evaluation, the baseline of 11 compounds was separated effectively within 68 and 34 min, respectively.Conclusion: The developed HPLC-DAD and UPLC-UV assays were successfully utilized for thesimultaneous analysis of eleven major polyphenols and can readily be utilized as quality control tools for Moringa oleifera leaves in China, with UPLC-UV method showing better separation, lower organic solvent usage and shorter analytical period.


Author(s):  
ASIT KUMAR DE ◽  
TANMOY BERA

Objective: The current study aims to boost the bioavailability criteria of two natural bioactive compounds, andrographolide and curcumin by their combination in nanostructured lipid carrier (NLC) and also to develop a straightforward reverse-phase high-performance liquid chromatography (RP-HPLC) method to validate, quantify of andrographolide and curcumin simultaneously in novel NLC formulation. Methods: The reliable chromatographic separation was executed by using a column of Phenomenex octadecylsilane (C18) at 35 °C column oven temperature using a mobile phase of 0.02 M potassium dihydrogen orthophosphate (KH2PO4) salt solution of pH 3.0 as a buffer and acetonitrile in 50: 50 v/v fixed ratio and 1.5 ml/min flow rate of with 20 μl injection load. The detection was carried out at 240 nm isosbestic wavelength employing a photodiode array (PDA) detector. Results: Andrographolide and curcumin were eluted at 2.4 and 4.9 min, respectively. Quantification and linearity were achieved for both drugs at the 10-140 μg/ml range. The method is specified as the presence of excipients utilized in the formulation failed to interfere with the estimation of andrographolide and curcumin. The developed method was successfully utilized to work out the drug loading efficiency and in vitro drug release study of those drugs in NLC formulation and also for the estimation of those drugs from rat plasma. Conclusion: The developed high-performance liquid chromatography (HPLC) method may be utilized in the future estimation of andrographolide and curcumin simultaneously in NLC and other nanoformulations both in vitro and in vivo.


2015 ◽  
Vol 34 (8) ◽  
pp. 819-827 ◽  
Author(s):  
K Farhadi ◽  
R Tahmasebi ◽  
P Biparva ◽  
R Maleki

Endocrine-disrupting chemicals are compounds that alter the normal functioning of the endocrine system. Organophosphorus insecticides, as chlorpyrifos (CPS), receive an increasing consideration as potential endocrine disrupters. Physiological estrogens, including estrone (E1), 17β-estradiol (E2), and diethylstilbestrol (DES) fluctuate with life stage, suggesting specific roles for them in biological and disease processes. There has been great interest in whether certain organophosphorus pesticides can affect the risk of breast cancer. An understanding of the interaction processes is the key to describe the fate of CPS in biological media. The objectives of this study were to evaluate total, bound, and freely dissolved amount of CPS in the presence of three estrogenic sex hormones (ESHs). In vitro experiments were conducted utilizing a headspace solid phase microextraction (HS-SPME) combined with high-performance liquid chromatography (HPLC) method. The obtained Scatchard plot based on the proposed SPME-HPLC method was employed to determine CPS-ESHs binding constant and the number of binding sites as well as binding percentage of each hormone to CPS. The number of binding sites per studied hormone molecule was 1.10, 1, and 0.81 for E1, E2, and DES, respectively. The obtained results confirmed that CPS bound to one class of binding sites on sex hormones.


Sign in / Sign up

Export Citation Format

Share Document