scholarly journals The Effect of Formulation of Curcuminoids on Their Metabolism by Human Colonic Microbiota

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 940 ◽  
Author(s):  
Letizia Bresciani ◽  
Claudia Favari ◽  
Luca Calani ◽  
Veronica Francinelli ◽  
Antonella Riva ◽  
...  

Turmeric (Curcuma longa L.) is the only edible plant recognized as a dietary source of curcuminoids, among which curcumin, demethoxycurcumin (DMC) and bis-demethoxycurcumin (Bis-DMC) are the most representative ones. Curcumin shows a very low systemic bioavailability and for this reason, several technologies have been adopted to improve it. These technologies generally improve curcuminoid absorption in the small intestine, however, no data are available about the effect of curcuminoid formulation on colonic biotransformation. The present study aims at investigating the human colonic metabolism of curcuminoids, prepared with two different technologies, using an in vitro model. Unformulated curcuminoid and lecithin-curcuminoid botanical extracts were fermented using an in vitro fecal model and colonic catabolites were identified and quantified by uHPLC-MSn. Native compounds, mainly curcumin, DMC and bis-DMC, were metabolized by colonic microbiota within the 24-h incubation. The degradation of curcuminoids led to the formation of specific curcuminoid metabolites, among which higher concentrations of bis(demethyl)-tetrahydrocurcumin and bis(demethyl)-hexahydrocurcumin were found after lecithin-extract fermentation compared to the concentration detected after unformulated extract. In conclusion, both curcumin-based botanical extracts can be considered important sources of curcuminoids, although the lecithin-formulated extract led to a higher production of curcuminoid catabolites. Moreover, a new curcuminoid catabolite, namely bis(demethyl)-hexahydrocurcumin, has been putatively identified, opening new perspectives in the investigation of curcuminoid bioavailability and their potential metabolite bioactivity.

2018 ◽  
Vol 12 (5) ◽  
pp. 485-508 ◽  
Author(s):  
Zhongyuan Guo ◽  
Nicole J. Martucci ◽  
Yizhong Liu ◽  
Eusoo Yoo ◽  
Elad Tako ◽  
...  

2009 ◽  
Vol 21 (6) ◽  
pp. 642-649 ◽  
Author(s):  
Stefan P.J. Dullens ◽  
Ronald P. Mensink ◽  
Edwin C.M. Mariman ◽  
Jogchum Plat

2021 ◽  
Vol 22 (11) ◽  
pp. 5760
Author(s):  
Gemma Di Di Pompo ◽  
Margherita Cortini ◽  
Roberto Palomba ◽  
Valentina Di Di Francesco ◽  
Elena Bellotti ◽  
...  

In the tumor microenvironment, mesenchymal stromal cells (MSCs) are key modulators of cancer cell behavior in response to several stimuli. Intratumoral acidosis is a metabolic trait of fast-growing tumors that can induce a pro-tumorigenic phenotype in MSCs through the activation of the NF-κB-mediated inflammatory pathway, driving tumor clonogenicity, invasion, and chemoresistance. Recent studies have indicated that curcumin, a natural ingredient extracted from Curcuma longa, acts as an NF-κB inhibitor with anti-inflammatory properties. In this work, highly proliferating osteosarcoma cells were used to study the ability of curcumin to reduce the supportive effect of MSCs when stimulated by acidosis. Due to the poor solubility of curcumin in biological fluids, we used spherical polymeric nanoparticles as carriers (SPN-curc) to optimize its uptake by MSCs. We showed that SPN-curc inhibited the release of inflammatory cytokines (IL6 and IL8) by acidity-stimulated MSCs at a higher extent than by free curcumin. SPN-curc treatment was also successful in blocking tumor stemness, migration, and invasion that were driven by the secretome of acid-stressed MSCs. Overall, these data encourage the use of lipid–polymeric nanoparticles encapsulating NF-κB inhibitors such as curcumin to treat cancers whose progression is stimulated by an activated mesenchymal stroma.


2010 ◽  
Vol 1 (1) ◽  
pp. 31-36 ◽  
Author(s):  
A. Maathuis ◽  
D. Keller ◽  
S. Farmer

We have investigated the survival and activity of GanedenBC30 during passage through the upper gastro-intestinal tract. GanedenBC30 was tested in a dynamic, validated, in vitro model of the stomach and small intestine (TIM-1) on survival and its potential to aid in digestion of milk protein, lactose and fructose. The survival of GanedenBC30 was high (70%), although germination of the spores was minimal (<10%) under the conditions tested. Survival of the strain in the presence of lactose and fructose was markedly lower (56-59%) than in the absence of the sugars. The amount of digested milk protein available for absorption was somewhat higher (+0.2 g) when GanedenBC30 was added to the milk. When GanedenBC30 was tested with lactose or fructose added to the meal, the cumulative amount of lactate produced was slightly higher (+0.12-0.18 mmol) compared to the GanedenBC30 alone. In conclusion, although the differences in survival of GanedenBC30 are small, these results show the potential of GanedenBC30 to aid in protein digestion and in the digestion of lactose and fructose. If a larger fraction of the Bacillus coagulans cells had germinated, the influence on protein and carbohydrate digestion would probably have been much greater. Importance of the findings: the potential of GanedenBC30 to aid in the digestion of lactose and fructose could be used to prevent occurrence of intestinal symptoms in individuals sensitive to these carbohydrates.


2016 ◽  
Vol 22 (9) ◽  
pp. 873-883 ◽  
Author(s):  
Matthias Schweinlin ◽  
Sabine Wilhelm ◽  
Ivo Schwedhelm ◽  
Jan Hansmann ◽  
Rene Rietscher ◽  
...  

2020 ◽  
Vol 11 (4) ◽  
pp. 403-409
Author(s):  
K. Venema ◽  
J. Verhoeven ◽  
C. Beckman ◽  
D. Keller

The aim of the research was to compare the survival of a blend of five probiotic strains (2 bifidobacteria and 3 lactobacilli) in a capsule within capsule (Duocap®) containing Ahiflower® oil, as compared to the strains in the powder (with or without Ahiflower oil), or the strains when present in the inner capsule only. This was tested in a validated, dynamic in vitro model of the stomach and small intestine (TIM-1), simulating human adults. Experiments were performed both in the gastric compartment of the model, as well as in the complete system (stomach + small intestine). Survival of the strains after transit through the gastric compartment in the Duocap capsule was higher by about a factor of 1.5 compared to the other 3 variables. In these gastric experiments, the Ahiflower oil did not seem to have an additional benefit, in the sense that it did not increase survival over the strains alone. After transit through the complete gastrointestinal tract survival was approximately 2-fold higher for the strains within the Duocap capsule, compared to the strains within the inner capsule or the powder. In these experiments, Ahiflower oil did have an additional benefit. The survival of the strains in the combination of powder with Ahiflower oil showed a similar survival as that of the Duocap, although in the first few hours of the experiments survival of both species lagged behind, and only caught up at the end of the test. In conclusion, the developed capsule-in-capsule technology increased the amount of viable cells in the upper gastrointestinal tract, mainly due to the presence of the polyunsaturated fatty acids contained in the outer capsule, which particularly protected the blend of probiotics in the small intestine.


Sign in / Sign up

Export Citation Format

Share Document