scholarly journals Inkjet-Printed Molybdenum Disulfide and Nitrogen-Doped Graphene Active Layer High On/Off Ratio Transistors

Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1081 ◽  
Author(s):  
Mohi Uddin Jewel ◽  
Mahmuda Akter Monne ◽  
Bhagyashree Mishra ◽  
Maggie Yihong Chen

Fully inkjet-printed device fabrication is a crucial goal to enable large-area printed electronics. The limited number of two-dimensional (2D) material inks, the bottom-gated structures, and the low current on/off ratio of thin-film transistors (TFTs) has impeded the practical applications of the printed 2D material TFTs. In the search for TFTs with high current ratios, we introduce a stable and efficient method of nitrogen-doped graphene (NDG) ink preparation for inkjet printing by liquid-phase exfoliation. The NDG thin film is print-stacked with molybdenum disulfide (MoS2) by multiple printing passes to construct a MoS2–NDG stack. We demonstrate top-gated fully inkjet-printed MoS2–NDG transistors with silver drain, source, and gate electrodes, and a barium titanate (BaTiO3) dielectric. A 100% inkjet-printed MoS2–NDG vertical 2D active heterostructure layer transistor with a current on/off ratio of 1200 is exhibited. The results may lead towards the development of all-printed 2D material-based transistor switches.

2021 ◽  
Vol 623 ◽  
pp. 119077
Author(s):  
Rumwald Leo G. Lecaros ◽  
Reincess E. Valbuena ◽  
Lemmuel L. Tayo ◽  
Wei-Song Hung ◽  
Chien-Chieh Hu ◽  
...  

Desalination ◽  
2019 ◽  
Vol 451 ◽  
pp. 125-132 ◽  
Author(s):  
Mahdi Fathizadeh ◽  
Huynh Ngoc Tien ◽  
Konstantin Khivantsev ◽  
Zhuonan Song ◽  
Fanglei Zhou ◽  
...  

Carbon ◽  
2012 ◽  
Vol 50 (12) ◽  
pp. 4476-4482 ◽  
Author(s):  
Hui Gao ◽  
Li Song ◽  
Wenhua Guo ◽  
Liang Huang ◽  
Dezheng Yang ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3121
Author(s):  
Hosna Ghanbarlou ◽  
Nikoline Loklindt Pedersen ◽  
Morten Enggrob Simonsen ◽  
Jens Muff

The synergy between electrochemical oxidation and adsorption on particle electrodes was investigated in three-dimensional (3D) systems for p-nitrosodimethylaniline (RNO) decolorization and pesticide removal. A comparison was made between granular activated carbon (GAC) and a novel synthesized nitrogen-doped graphene-based particle electrode (NCPE). Experiments on RNO decolorization show that the synergy parameter of the 3D-NCPE system was improved 3000 times compared to the studied 3D-GAC system. This was due to the specific nanostructure and composition of the NCPE material. Nitrogen-doped graphene triggered an oxygen reduction reaction, producing hydrogen peroxide that simultaneously catalyzed on iron sites of the NCPEs to hydroxyl radicals following the electro-Fenton (EF) process. Data showed that in the experimental setup used for the study, the applied cell voltage required for the optimal value of the synergy parameter could be lowered to 5V in the 3D-NCPEs process, which is significantly better than the 15–20 V needed for synergy to be found in the 3D-GAC process. Compared to previous studies with 3D-GAC, the removal of pesticides 2,6 dichlorobenzamide (BAM), 2-methyl-4-chlorophenoxyaceticacid (MCPA), and methylchlorophenoxypropionic acid (MCPP) was also enhanced in the 3D-NCPE system.


2021 ◽  
Author(s):  
Jingjing Liu ◽  
Wenyao Li ◽  
Zhe Cui ◽  
Jiaojiao Li ◽  
Fang Yang ◽  
...  

A core–shell CoMn-P@NG heterostructure electrode demonstrated impressive performance of hydrogen evolution over a broad pH range and maintained excellent stability.


Sign in / Sign up

Export Citation Format

Share Document