scholarly journals Analysis of Nicotine Metabolites in Hair and Nails Using QuEChERS Method Followed by Liquid Chromatography–Tandem Mass Spectrometry

Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1763
Author(s):  
Junhee Kim ◽  
Hyun-Deok Cho ◽  
Joon Hyuk Suh ◽  
Ji-Youn Lee ◽  
Eunyoung Lee ◽  
...  

Many studies have analyzed nicotine metabolites in blood and urine to determine the toxicity caused by smoking, and assess exposure to cigarettes. Recently, hair and nails have been used as alternative samples for the evaluation of smoking, as not only do they reflect long-term exposure but they are also stable and easy to collect. Liquid-liquid or solid-phase extraction has mainly been used to detect nicotine metabolites in biological samples; however, these have disadvantages, such as the use of toxic organic solvents and complex pretreatments. In this study, a modified QuEChERS method was proposed for the first time to prepare samples for the detection of nicotine metabolite cotinine (COT) and trans-3′-hydroxycotinine (3-HCOT) in hair and nails. High-performance liquid chromatography–tandem mass spectrometry (LC–MS/MS) was used to analyze traces of nicotine metabolites. The established method was validated for selectivity, linearity, lower limit of quantitation, accuracy, precision and recovery. In comparison with conventional liquid-liquid extraction (LLE), the proposed method was more robust, and resulted in higher recoveries with favorable analytical sensitivity. Using this method, clinical samples from 26 Korean infants were successfully analyzed. This method is expected to be applicable in the routine analysis of nicotine metabolites for environmental and biological exposure monitoring.

Author(s):  
C A Chadwick ◽  
L J Owen ◽  
B G Keevil

Background: Dehydroepiandrosterone sulphate (DHEAS) is a steroid that is increasingly being recognized as a potential drug of abuse in many countries. This is due to its reputation as a hormone that may be able to retard the ageing process. The measurement of DHEAS is useful in the diagnosis of medical conditions such as congenital adrenal hyperplasia and polycystic ovary syndrome. Thus, a liquid chromatography-tandem mass spectrometry method has been developed to determine DHEAS concentrations in human serum. Method: The chromatography was performed using a WatersTM 2795 Alliance HT LC system coupled to a Mercury Fusion-RP column fitted with a SecurityGuardTM column. Results: DHEAS and the internal standard, deuterated DHEAS, both had a retention time of 1.5 min. The transition determined by the Micromass QuattroTM tandem mass spectrometer for DHEAS was m/z 367.3>96.7 and for the internal standard m/z 369.3>96.6. The method was linear up to 20 µmol/L; the lower limit of detection and the lower limit of quantitation were both 1 µmol/L. The intra- and interassay imprecision were <11% over a concentration range of 1-18 µmol/L for the in-house quality control and <12% for the intra- and interassay imprecision for the Bio-Rad Lyphocheck QC. Conclusion: The measurement of DHEAS by liquid chromatography-tandem mass spectrometry is robust and has a simple sample preparation procedure with a rapid cycle time of only 4 min.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3210 ◽  
Author(s):  
Michele Protti ◽  
Camilla Marasca ◽  
Marco Cirrincione ◽  
Angelo E. Sberna ◽  
Roberto Mandrioli ◽  
...  

Testing and monitoring anabolic androgenic steroids in biological fluids is a key activity in anti-doping practices. In this study, a novel approach is proposed, based on dried urine microsampling through two different workflows: dried urine spots (DUS) and volumetric absorptive microsampling (VAMS). Both techniques can overcome some common drawbacks of urine sampling, such as analyte instability and storage and transportation problems. Using an original, validated liquid chromatography–tandem mass spectrometry (LC-MS/MS) method, exogenous and endogenous unconjugated steroids were analysed. Despite the limitations of microsampling volume, good sensitivity was obtained (limit of quantitation ≤1.5 ng/mL for all analytes), with satisfactory precision (relative standard deviation <7.6%) and absolute recovery (>70.3%). Both microsampling platforms provide reliable results, in good agreement with those obtained from urine.


Sign in / Sign up

Export Citation Format

Share Document