scholarly journals Structure-Dependent Activity of Plant-Derived Sweeteners

Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1946 ◽  
Author(s):  
Serhat Sezai Ҫiçek

Human sensation for sweet tastes and the thus resulting over-consumption of sugar in recent decades has led to an increasing number of people suffering from caries, diabetes, and obesity. Therefore, a demand for sugar substitutes has arisen, which increasingly has turned towards natural sweeteners over the last 20 years. In the same period, thanks to advances in bioinformatics and structural biology, understanding of the sweet taste receptor and its different binding sites has made significant progress, thus explaining the various chemical structures found for sweet tasting molecules. The present review summarizes the data on natural sweeteners and their most important (semi-synthetic) derivatives until the end of 2019 and discusses their structure–activity relationships, with an emphasis on small-molecule high-intensity sweeteners.

2021 ◽  
Author(s):  
Huazhong He

More than thirty years ago, I proposed a theory about sweet and bitter molecules’ recognition by protein helical structures. Unfortunately the papers could not go to public platform until now. Inspired by the sweet taste theory<sup>1,2</sup>, this bitter taste theory conveys that bitter molecules are recognized by receptor protein helical structures. The recognition process is a dynamic action, in which the receptor protein helices have a torsion-spring-like oscillation between helical structures of 3.6 and 4 amino acids per turn. Based on the characteristics of the bitter receptor protein helix oscillation, it perfectly explains why in bitter molecules, only one unit of hydrogen donor (DH) or hydrogen acceptor (B) is enough in helping molecules to elicit bitter taste. The potential DH and B in bitter receptor are any NH or O of receptor’s peptide NHs and Os, which are the ones forming intramolecular H-bonds responsible for the formation of receptor protein helical structures. Furthermore, only one unit of DH or B is allowed for structurally simple ligands. As recognition sites are only associated with a small fraction – helix structure of whole bitter receptor, multiple binding sites or multiple receptors are well expected. As the oscillation may have different extent, it translates to bitterness intensity. According to ligand-receptor binding motion, bitter receptor could be divided into two kinds of spaces, which are similar to the situation in sweet taste receptor: main and side grooves. These have been discussed in context and especially great details in paper titled deciphering aspartyl peptide sweeteners <sup>2</sup>.


2021 ◽  
Author(s):  
Huazhong He

More than thirty years ago, I proposed a theory about sweet and bitter molecules’ recognition by protein helical structures. Unfortunately the papers could not go to public platform until now. Inspired by the sweet taste theory<sup>1,2</sup>, this bitter taste theory conveys that bitter molecules are recognized by receptor protein helical structures. The recognition process is a dynamic action, in which the receptor protein helices have a torsion-spring-like oscillation between helical structures of 3.6 and 4 amino acids per turn. Based on the characteristics of the bitter receptor protein helix oscillation, it perfectly explains why in bitter molecules, only one unit of hydrogen donor (DH) or hydrogen acceptor (B) is enough in helping molecules to elicit bitter taste. The potential DH and B in bitter receptor are any NH or O of receptor’s peptide NHs and Os, which are the ones forming intramolecular H-bonds responsible for the formation of receptor protein helical structures. Furthermore, only one unit of DH or B is allowed for structurally simple ligands. As recognition sites are only associated with a small fraction – helix structure of whole bitter receptor, multiple binding sites or multiple receptors are well expected. As the oscillation may have different extent, it translates to bitterness intensity. According to ligand-receptor binding motion, bitter receptor could be divided into two kinds of spaces, which are similar to the situation in sweet taste receptor: main and side grooves. These have been discussed in context and especially great details in paper titled deciphering aspartyl peptide sweeteners <sup>2</sup>.


2006 ◽  
Vol 12 (35) ◽  
pp. 4591-4600 ◽  
Author(s):  
Meng Cui ◽  
Peihua Jiang ◽  
Emeline Maillet ◽  
Marianna Max ◽  
Robert Margolskee ◽  
...  

Author(s):  
A. W. Moran ◽  
K. Daly ◽  
M. A. Al-Rammahi ◽  
S. P. Shirazi-Beechey

Sensing of nutrients by chemosensory cells in the gastrointestinal tract plays a key role in transmitting food-related signals, linking information about the composition of ingested foods to digestive processes. In recent years, a number of G protein-coupled receptors (GPCR) responsive to a range of nutrients have been identified. Many are localised to intestinal enteroendocrine (chemosensory) cells, promoting hormonal and neuronal signalling locally, centrally and to the periphery. The field of gut sensory systems is relatively new and still evolving. Despite huge interest in these nutrient-sensing GPCR, both as sensors for nutritional status and targets for preventing the development of metabolic diseases, major challenges remain to be resolved. However, the gut expressed sweet taste receptor, resident in L-enteroendocrine cells and responsive to dietary sweetener additives, has already been successfully explored and utilised as a therapeutic target, treating weaning-related disorders in young animals. In addition to sensing nutrients, many GPCR are targets for drugs used in clinical practice. As such these receptors, in particular those expressed in L-cells, are currently being assessed as potential new pathways for treating diabetes and obesity. Furthermore, growing recognition of gut chemosensing of microbial-produced SCFA acids has led further attention to the association between nutrition and development of chronic disorders focusing on the relationship between nutrients, gut microbiota and health. The central importance of gut nutrient sensing in the control of gastrointestinal physiology, health promotion and gut–brain communication offers promise that further therapeutic successes and nutritional recommendations will arise from research in this area.


1982 ◽  
Vol 175 (4) ◽  
pp. 266-268 ◽  
Author(s):  
Jean-Marie Tinti ◽  
Claude Nofre ◽  
Anne-Marie Peytavi

Sign in / Sign up

Export Citation Format

Share Document