scholarly journals In Vitro Bioaccessibility and Antioxidant Activity of Coffee Silverskin Polyphenolic Extract and Characterization of Bioactive Compounds Using UHPLC-Q-Orbitrap HRMS

Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2132 ◽  
Author(s):  
Luigi Castaldo ◽  
Alfonso Narváez ◽  
Luana Izzo ◽  
Giulia Graziani ◽  
Alberto Ritieni

Coffee silverskin (CS), the main by-product in the coffee industry, contains a vast number of human health-related compounds, which may justify its exploitation as a functional food ingredient. This study aimed to provide a comprehensive analysis of the polyphenolic and alkaloid profile through UHPLC-Q-Orbitrap HRMS analysis. The bioaccessibility of total phenolic compounds and changes in the antioxidant activity during an in vitro gastrointestinal digestion were also evaluated through spectrophotometric tests (TPC by Folin-Ciocalteu, ABTS, DPPH, and FRAP), to elucidate their efficacy for future applications in the nutraceutical industry. Caffeoylquinic and feruloylquinic acids were the most representative polyphenols, with a mean concentration of 5.93 and 4.25 mg/g, respectively. Results showed a high content of caffeine in the analyzed CS extracts, with a mean value of 31.2 mg/g, meaning a two-fold increase when compared to coffee brews. Our findings highlighted that both the bioaccessibility and antioxidant activity of CS polyphenols significantly increased in each in vitro gastrointestinal digestion stage. In addition, the colon stage might constitute the main biological site of action of these antioxidant compounds. These results suggest that in vivo, the dietary polyphenols from CS might be metabolized by human colonic microflora, generating metabolites with a greater antioxidant activity, increasing their well-known beneficial effects.

Antioxidants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 212 ◽  
Author(s):  
Teodora Scrob ◽  
Anamaria Hosu ◽  
Claudia Cimpoiu

Brassica oleracea L. var. Italica is known to contain a wide variety of antioxidants and due to the protection against various diseases its consumption has been increasing over the years. Thus, knowledge of the changes that occur during the digestion process is of great interest. The aim of this study was to investigate the influence of in vitro gastrointestinal digestion of broccoli on antioxidant activity and on the chlorophyll, carotenoid and phenolic content. First, the ultrasound-assisted extraction of bioactive compounds was optimized and the kinetic model was evaluated. Then, the broccoli was subjected to a static simulated digestion. The antioxidant activity was monitored by ABTS [2,2’-azinobis-(3-ethylbenzothiazoline-6-sulfonate)] assay and the contents of target compounds were investigated by UV-Vis spectrophotometry and thin-layer chromatography. The optimum conditions were: solvent—ethanol; time—20 min and temperature—30 °C, and a second order kinetic model was found to describe the mechanism of extraction. The antioxidant activity and carotenoid, chlorophyll and total phenolic content was significantly decreased after simulated gastric and intestinal digestion. The gastric digestion considerably decreased carotenoid and chlorophyll content, meanwhile the intestinal digestion significantly decreased the total phenolic content (TPC). The antioxidant activity was equally affected by both gastric and intestinal digestion.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1593
Author(s):  
Iván Gómez-López ◽  
Gloria Lobo-Rodrigo ◽  
María P. Portillo ◽  
M. Pilar Cano

The aim of the present study was the full characterization, quantification, and determination of the digestive stability and bioaccessibility of individual betalain and phenolic compounds of Opuntia stricta, var. Dillenii fresh fruits (peel, pulp, and whole fruit) and of the products of the industrialization to obtain jam (raw pressed juice (product used for jam formulation), by-product (bagasse), and frozen whole fruit (starting material for jam production)). Opuntia stricta var. Dillenii fruits and products profile showed 60 betalain and phenolic compounds that were identified and quantified by HPLC-DAD-ESI/MS and HPLC-DAD-MS/QTOF, being 25 phenolic acids (including isomers and derivatives), 12 flavonoids (including glycosides), 3 ellagic acids (including glycosides and derivative), and 20 betanins (including degradation compounds). In vitro gastrointestinal digestion was performed by INFOGEST® protocol. Fruit pulp showed the greater content of total betalains (444.77 mg/100 g f.w.), and jam only showed very low amounts of two betanin degradation compounds, Cyclo-dopa-5-O-β-glucoside (and its isomer) (0.63 mg/100 f.w.), and two Phyllocactin derivatives (1.04 mg/100 g f.w.). Meanwhile, fruit peel was the richer tissue in total phenolic acids (273.42 mg/100 g f.w.), mainly in piscidic acid content and total flavonoids (7.39 mg/100 g f.w.), isorhamnetin glucoxyl-rhamnosyl-pentoside (IG2) being the most abundant of these compounds. The stability of betalains and phenolic compounds during in vitro gastrointestinal digestion is reported in the present study. In Opuntia stricta var. Dillenii pulp (the edible fraction of the fresh fruit), the betanin bioaccessibility was only 22.9%, and the flavonoid bioaccessibility ranged from 53.7% to 30.6%, depending on the compound. In non-edible samples, such as peel sample (PE), the betanin bioaccessibility was 42.5% and the greater bioaccessibility in flavonoids was observed for quercetin glycoside (QG1) 53.7%, the fruit peel being the most interesting material to obtain antioxidant extracts, attending to its composition on antioxidant compounds and their bioaccessibilities.


RSC Advances ◽  
2015 ◽  
Vol 5 (112) ◽  
pp. 92089-92095 ◽  
Author(s):  
Zhengmei Wu ◽  
Jianwen Teng ◽  
Li Huang ◽  
Ning Xia ◽  
Baoyao Wei

The stability and antioxidant activity of phenolic compounds, as well as the bile acid-binding activity of green, black, raw liubao and aged liubao tea duringin vitrogastrointestinal digestion were evaluated.


eFood ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 85 ◽  
Author(s):  
Danila Cianciosi ◽  
Tamara Yuliett Forbes-Hernández ◽  
Francesca Giampieri ◽  
Jiaojiao Zhang ◽  
Johura Ansary ◽  
...  

LWT ◽  
2020 ◽  
Vol 131 ◽  
pp. 109725
Author(s):  
Amalia Simonetti ◽  
Annamaria Perna ◽  
Giulia Grassi ◽  
Emilio Gambacorta

Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 671 ◽  
Author(s):  
Xiao Xu ◽  
Wenxiu Hu ◽  
Siduo Zhou ◽  
Chuanhai Tu ◽  
Xiudong Xia ◽  
...  

Glutinous rice-based foods have a long history are consumed worldwide. They are also in great demand for the pursuit of novel sensory and natural health benefits. In this study, we developed a novel fermented glutinous rice product with the supplementation of Fu brick tea. Using in vitro antioxidant evaluation and phenolic compounds analysis, fermentation with Fu brick tea increased the total phenolic content and enhanced the antioxidant activity of glutinous rice, including scavenging of 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) radical, 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical, and hydroxyl radical, ferric-reducing antioxidant power, and ferric ion reducing power and iron chelating capability. Besides, compared with traditional fermented glutinous rice, this novel functional food exhibited a stronger activity for protecting DNA against hydroxyl radical-induced oxidation damage. Quantitative analysis by HPLC identified 14 compounds covering catechins and phenolic acids, which were considered to be positively related to the enhanced antioxidant capability. Furthermore, we found that 80% ethanol was a suitable extract solvent compared with water, because of its higher extraction efficiency and stronger functional activities. Our results suggested that this novel fermented glutinous rice could serve as a nutraceutical food/ingredient with special sensory and functional activities.


2015 ◽  
Vol 6 (5) ◽  
pp. 1611-1619 ◽  
Author(s):  
Ana Oliveira ◽  
Manuela Pintado

The aim of this research was to evaluate the influence ofin vitrogastrointestinal digestion on the stability and bio-accessibility of phenolic compounds and carotenoids, as well as on the antioxidant activity in strawberry and peach enriched yoghurt.


Sign in / Sign up

Export Citation Format

Share Document