scholarly journals Comparison of Various Chromatographic Systems for Identification of Vortioxetine in Bulk Drug Substance, Human Serum, Saliva, and Urine Samples by HPLC-DAD and LC-QTOF-MS

Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2483 ◽  
Author(s):  
Anna Petruczynik ◽  
Karol Wróblewski ◽  
Krzysztof Wojtanowski ◽  
Tomasz Mroczek ◽  
Dariusz Juchnowicz ◽  
...  

Background: Determination of psychotropic drugs in clinical study is significant, and the establishment of methodologies for these drugs in biological matrices is essential for patients’ safety. The search for new methods for their detection is one of the most important challenges of modern scientific research. The methods for analyzing of psychotropic drugs and their metabolites in different biological samples should be based on combining a very efficient separation technique including high-performance liquid chromatography (HPLC), with a sensitive detection method and effectively sample preparation methods. Objective: Retention, peaks symmetry and system efficiency of vortioxetine on Hydro RP, Polar RP, HILIC A (with silica stationary phase), HILIC-B (with aminopropyl stationary phase), and ACE HILIC-N (with polyhydroxy stationary phase and SCX columns were investigated. Various mobile phases containing methanol or acetonitrile as organic modifiers and different additives were also applied to obtained optimal retention, peaks shape, and systems efficiency. The best chromatographic procedure was used for simultaneous analysis of vortioxetine and its metabolites in human serum, urine and saliva samples. Methods: Analysis of vortioxetine was performed in various chromatographic systems: Reversed phase (RP) systems on alkylbonded or phenyl stationary phases, hydrophilic interaction liquid chromatography (HILIC), and ion-exchange chromatography (IEC). Based on the dependence of log k vs the concentration of the organic modifier, log kw values for vortioxetine in various chromatographic systems were determined and compared with calculated log P values. Solid phase extraction (SPE) method was applied for sample pre-treatment before HPLC analysis. HPLC-QTOF-MS method was applied for confirmation of presence of vortioxetine and some its metabolites in biological samples collected from psychiatric patient. Conclusions: Differences were observed in retention parameters with a change of the applied chromatographic system. The various properties of stationary phases resulted in differences in vortioxetine retention, systems’ efficiency, and peaks’ shape. Lipophilicity parameters were also determined using different HPLC conditions. The most optimal systems were chosen for the analysis of vortioxetine in biological samples. Both serum and urine or saliva samples collected from patients treated with vortioxetine can be used for the drug determination. For the first time, vortioxetine was detected in patient’s saliva. Obtained results indicate on possibility of application of saliva samples, which collection are non-invasive and painless, for determination and therapeutic drug monitoring in patients.

2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Anna Petruczynik ◽  
Karol Wróblewski ◽  
Kamil Dzioba ◽  
Monika Waksmundzka-Hajnos

AbstractRetention parameters of psychotropic drug standards were determined on different columns, i.e., Octadecyl silica, Phenyl, Phenyl-Hexyl, Polar Reverse Phase, Pentafluorophenyl, and Cyanopropyl using aqueous eluent systems containing methanol or acetonitrile as organic modifiers, acetate buffer at pH 3.5 and addition of silanol blocker − diethylamine (DEA).The retention, separation selectivity, and sequence of elution were different when using eluents containing various organic modifiers. The significant differences were observed in retention parameters with a change of the used stationary phase. The various properties of stationary phases resulted in differences in analyte retention, peaks shape, systems efficiency and separation selectivity. The best shape of peaks were on Cyanopropyl (CN) column and the highest efficiency for most investigated psychotropic drugs were obtained on Phenyl-Hexyl and Polar RP columns.


2019 ◽  
Vol 17 (1) ◽  
pp. 1361-1373 ◽  
Author(s):  
K. Wróblewski ◽  
A. Petruczynik ◽  
T. Tuzimski ◽  
K. Prajsnar ◽  
D. Przygodzka ◽  
...  

AbstractRetention, separation selectivity and system efficiency of selected basic psychotropic drugs (clozapine, aripiprazole, vortioxetine and zolpidem) and drug metabolites (desmethylclozapine, clozapine N-oxide and dehydroaripiprazole) on Hydro RP, Phenyl-Hexyl and Polar RP columns were studied. Mobile phases containing methanol or acetonitrile as organic modifiers, acetate buffer at pH 3.5 and addition of diethylamine (DEA) as a silanol blocker were applied. Significant differences in the retention, peak shapes and systems’ efficiency of the investigated compounds were obtained depending on the tested chemically bonded stationary phases with various ligands. Based on the obtained results the Phenyl-Hexyl column was selected for analysis of the drugs and their metabolites in human serum and saliva samples. Solid phase extraction (SPE) was applied for sample pre-treatment. The best SPE-HPLC-DAD procedure was used for simultaneous analysis of clozapine, aripiprazole and their metabolites in body fluids. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was applied for confirmation of the presence of the investigated compounds in biological samples. The lower limit of quantification (LLOQ) of clozapine obtained using the proposed method was 10 ng/mL. The validated method for determining the presence of clozapine and its main metabolite was successfully applied in therapeutic drug monitoring.


2016 ◽  
Vol 8 (31) ◽  
pp. 6038-6045 ◽  
Author(s):  
Yadi Wang ◽  
M. Farooq Wahab ◽  
Zachary S. Breitbach ◽  
Daniel W. Armstrong

Stationary phases composed of native cyclofructan 6 (CF6) and benzoic acid modified CF6 were synthesized and evaluated for hydrophilic interaction liquid chromatography (HILIC).


mSphere ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Gregory R. Wiedman ◽  
Yanan Zhao ◽  
David S. Perlin

ABSTRACT Clinicians need a better way to accurately monitor the concentration of antimicrobials in patient samples. In this report, we describe a novel, low-sample-volume method to monitor the azole-class antifungal drug posaconazole, as well as certain other long-chain azole-class antifungal drugs in human serum samples. Posaconazole represents an important target for therapeutic drug monitoring (TDM) due to its widespread use in treating invasive fungal infections and well-recognized variability of pharmacokinetics. The current “gold standard” requires trough and peak monitoring through high-pressure liquid chromatography (HPLC) or liquid chromatography-tandem mass spectroscopy (LC-MS/MS). Other methods include bioassays that use highly susceptible strains of fungi in culture plates or 96-well formats to monitor concentrations. Currently, no method exists that is both highly accurate in detecting free drug concentrations and is also rapid. Herein, we describe a new method using reduced graphene oxide (rGO) and a fluorescently labeled aptamer, which can accurately assess clinically relevant concentrations of posaconazole and other long-chain azole-class drugs in little more than 1 h in a total volume of 100 µl. IMPORTANCE This work describes an effective assay for TDM of long-chain azole-class antifungal drugs that can be used in diluted human serum samples. This assay will provide a quick, cost-effective method for monitoring concentrations of drugs such as posaconazole that exhibit well-documented pharmacokinetic variability. Our rGO-aptamer assay has the potential to improve health care for those struggling to treat fungal infections in rural or resource-limited setting.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2580 ◽  
Author(s):  
Karol Wróblewski ◽  
Anna Petruczynik ◽  
Tomasz Tuzimski ◽  
Dominika Przygodzka ◽  
Grzegorz Buszewicz ◽  
...  

Background: Identification and quantitative determination of cytisine, especially in biological samples and pharmaceutical formulations, is still a difficult analytical task. Cytisine is an alkaloid with a small and very polar molecule. For this reason, it is very weakly retained on reversed phase (RP) stationary phases, such as commonly used alkyl-bonded phases. The very weak retention of cytisine causes it to be eluted together with the components of biological matrices. Objective: Comparison and evaluation of various chromatographic systems for analysis of cytisine in different matrices—serum, saliva and pharmaceutical formulation—by high performance liquid chromatography (HPLC) with diode array (DAD), fluorescence (FLD) and mass spectrometry (MS) detection. Methods: The analyses were performed using HPLC in reversed phase (RP), hydrophilic interaction liquid chromatography (HILIC) and ion exchange chromatography (IEC) modes. Different sample pre-treatment methods were tested: Protein precipitation (with acetone, methanol (MeOH) or acetonitrile (ACN), and solid phase extraction (SPE) using cartridges with octadecyl (C18), hydrophilic-lipophilic balanced copolymer (HLB) or strong cation exchange sorbents (Strata X-C). Conclusion: Significant differences were observed in retention parameters with a change of the used chromatographic system. The various properties of stationary phases resulted in differences in analyte retention, peaks’ shape and systems’ efficiency. The weakest retention was observed using RP systems; however, the use of the Polar RP phase can be an alternative for application in green chromatography. In the strongest retention was observed using a strong cation exchange (SCX) phase. The most optimal systems were chosen for the analysis of cytisine in the pharmaceutical preparation, serum and saliva after sample pre-treatment with the new SPE procedure. Due to the sensitivity, the use of HPLC-DAD or HPLC-FLD is the most optimal for drug analysis in pharmaceutical preparations, whereas HPLC-MS is suitable for analysis of cytisine in biological samples.


Sign in / Sign up

Export Citation Format

Share Document