scholarly journals Suitable Polymeric Coatings to Avoid Localized Surface Plasmon Resonance Hybridization in Printed Patterns of Photothermally Responsive Gold Nanoinks

Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2499 ◽  
Author(s):  
Piersandro Pallavicini ◽  
Lorenzo De Vita ◽  
Francesca Merlin ◽  
Chiara Milanese ◽  
Mykola Borzenkov ◽  
...  

When using gold nanoparticle (AuNP) inks for writing photothermal readable secure information, it is of utmost importance to obtain a sharp and stable shape of the localized surface plasmon resonance (LSPR) absorption bands in the prints. The T increase at a given irradiation wavelength (ΔTλ) is the retrieved information when printed patterns are interrogated with a laser source. As ΔTλ is proportional to the absorbance at the wavelength λ, any enlargement or change of the absorbance peak shape in a printed pattern would lead to wrong or unreliable reading. With the aim of preparing AuNP inks suitable for inkjet printing of patterns with stable and reliable photothermal reading, we prepared liquid solutions of spherical AuNP coated with a series of different polymers and with or without additional dispersant. The optical stability of the inks and of the printed patterns were checked by monitoring the shape changes of the sharp LSPR absorption band of AuNP in the visible (λmax 519 nm) along weeks of ageing. AuNP coated with neutral polyethylenglycol thiols (HS-PEG) of mw 2000–20000 showed a strong tendency to rapidly agglomerate in the dry prints. The close contact between agglomerated AuNP resulted in the loss of the pristine shape of the LSPR band, that flattened and enlarged with the further appearance of a second maximum in the Near IR, due to plasmon hybridization. The tendency to agglomerate was found directly proportional to the PEG mw. Addition of the ethylcellulose (EC) dispersant to inks resulted in an even stronger and faster tendency to LSPR peak shape deformation in the prints due to EC hydrophobicity, that induced AuNP segregation and promoted agglomeration. The introduction of a charge on the AuNP coating revelead to be the correct way to avoid agglomeration and obtain printed patterns with a sharp LSPR absorption band, stable with ageing. While the use of a simple PEG thiol with a terminal negative charge, HS-PEGCOO(−) (mw 3000), was not sufficient, overcoating with the positively charged polyallylamine hydrochloride (PAH) and further overcoating with the negatively charged polystyrene sulfonate (PSS) yielded AuNP@HS-PEGCOO(−)/PAH(+) and AuNP@HS-PEGCOO(−)/PAH(+)/PSS(−), both giving stable prints. With these inks we have shown that it is possible to write photothermally readable secure information. In particular, the generation of reliable three-wavelength photothemal barcodes has been demonstrated.

2021 ◽  
pp. 2100653
Author(s):  
Gyeong‐Su Park ◽  
Kyung Suk Min ◽  
Hyuksang Kwon ◽  
Sangwoon Yoon ◽  
Sangwon Park ◽  
...  

Plasmonics ◽  
2021 ◽  
Author(s):  
Mohammad Rakibul Islam ◽  
Fahim Yasir ◽  
Md. Rakib Hossain Antor ◽  
Mahmudul Hassan Turja ◽  
Ashikur Rahman ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kohei Shimanoe ◽  
Soshi Endo ◽  
Tetsuya Matsuyama ◽  
Kenji Wada ◽  
Koichi Okamoto

AbstractLocalized surface plasmon resonance (LSPR) was performed in the deep ultraviolet (UVC) region with Al nanohemisphere structures fabricated by means of a simple method using a combination of vapor deposition, sputtering, and thermal annealing without top-down nanofabrication technology such as electron beam lithography. The LSPR in the UV region was obtained and tuned by the initial metal film thickness, annealing temperature, and dielectric spacer layer thickness. Moreover, we achieved a flexible tuning of the LSPR in a much deeper UVC region below 200 nm using a nanohemisphere on a mirror (NHoM) structure. NHoM is a structure in which a metal nanohemisphere is formed on a metal substrate that is interposed with an Al2O3 thin film layer. In the experimental validation, Al and Ga were used for the metal hemispheres. The LSPR spectrum of the NHoM structures was split into two peaks, and the peak intensities were enhanced and sharpened. The shorter branch of the LSPR peak appeared in the UVC region below 200 nm. Both the peak intensities and linewidth were flexibly tuned by the spacer thickness. This structure can contribute to new developments in the field of deep UV plasmonics.


RSC Advances ◽  
2015 ◽  
Vol 5 (31) ◽  
pp. 23990-23998 ◽  
Author(s):  
Gaoling Liang ◽  
Zhongjun Zhao ◽  
Yin Wei ◽  
Kunping Liu ◽  
Wenqian Hou ◽  
...  

A simple, label-free and cost-effective localized surface plasmon resonance (LSPR) immunosensing method was developed for detection of alpha-fetoprotein (AFP).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyeong-Min Kim ◽  
Dae Hong Jeong ◽  
Ho-Young Lee ◽  
Jae-Hyoung Park ◽  
Seung-Ki Lee

AbstractA simple optical fiber sensor based on localized surface plasmon resonance was constructed for direct and rapid measurement of thyroglobulin (Tg). Specific tests for Tg in patients that have undergone thyroidectomy are limited because of insufficient sensitivity, complicated procedures, and in some cases, a long time to yield a result. A sensitive, fast, and simple method is necessary to relieve the psychological and physical burden of the patient. Various concentrations of Tg were measured in a microfluidic channel using an optical fiber sensor with gold nanoparticles. The sensor chip has a detection limit of 93.11 fg/mL with no specificity for other antigens. The potential applicability of the Tg sensing system was evaluated using arbitrary samples containing specific concentrations of Tg. Finally, the sensor can be employed to detect Tg in the patient’s serum, with a good correlation when compared with the commercial kit.


Sign in / Sign up

Export Citation Format

Share Document