scholarly journals Functionalization of Polyethyleneimine with Hollow Cyclotriveratrylene and Its Subsequent Supramolecular Interaction with Doxorubicin

Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5455
Author(s):  
Carmine Coluccini ◽  
Yoke Mooi Ng ◽  
Yves Ira A. Reyes ◽  
Hsin-Yi Tiffany Chen ◽  
Yit Lung Khung

In this paper, a modified Cyclotriveratrylene was synthesized and linked to a branched Polyethylenimine, and this unique polymeric material was subsequently examined as a potential supramolecular carrier for Doxorubicin. Spectroscopic analysis in different solvents had shown that Doxorubicin was coordinated within the hollow-shaped unit of the armed Cyclotriveratrylene, and the nature of the host–guest complex revealed intrinsic Van der Waals interactions and hydrogen bonding between the host and guest. The strongest interaction was detected in water because of the hydrophobic effect shared between the aromatic groups of the Doxorubicin and Cyclotriveratrylene unit. Density functional theory calculations had also confirmed that in the most stable coordination of Doxorubicin with the cross-linked polymer, the aromatic rings of the Doxorubicin were localized toward the Cyclotriveratrylene core, while its aliphatic chains aligned closer with amino groups, thus forming a compact supramolecular assembly that may confer a shielding effect on Doxorubicin. These observations had emphasized the importance of supramolecular considerations when designing a novel drug delivery platform.

Crystals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 441 ◽  
Author(s):  
Nisha Geng ◽  
Tiange Bi ◽  
Niloofar Zarifi ◽  
Yan Yan ◽  
Eva Zurek

Interest in Na-S compounds stems from their use in battery materials at 1 atm, as well as the potential for superconductivity under pressure. Evolutionary structure searches coupled with Density Functional Theory calculations were employed to predict stable and low-lying metastable phases of sodium poor and sodium rich sulfides at 1 atm and within 100–200 GPa. At ambient pressures, four new stable or metastable phases with unbranched sulfur motifs were predicted: Na2S3 with C 2 / c and Imm2 symmetry, C 2 -Na2S5 and C 2 -Na2S8. Van der Waals interactions were shown to affect the energy ordering of various polymorphs. At high pressure, several novel phases that contained a wide variety of zero-, one-, and two-dimensional sulfur motifs were predicted, and their electronic structures and bonding were analyzed. At 200 GPa, P 4 / m m m -Na2S8 was predicted to become superconducting below 15.5 K, which is close to results previously obtained for the β -Po phase of elemental sulfur. The structures of the most stable M3S and M4S, M = Na, phases differed from those previously reported for compounds with M = H, Li, K.


2018 ◽  
Vol 25 (01) ◽  
pp. 1850038
Author(s):  
AMIRALI ABBASI ◽  
JABER JAHANBIN SARDROODI

Comparison of structural and electronic properties between pristine and N-doped titanium dioxide-(TiO2)/molybdenum disulfide (MoS2) nanocomposites and their effects on the adsorption of thiophene molecule were performed using density functional theory calculations. To correctly estimate the adsorption energies, the van der Waals interactions were taken into account in the calculations. On the TiO2/MoS2 nanocomposite, thiophene molecule tends to be strongly adsorbed by its sulfur atom. The five-fold coordinated titanium atom of TiO2 was found to be an active binding site for thiophene adsorption. The results suggest that the thiophene molecule has not any mutual interaction with MoS2 nanosheet. The electronic structures of the complex systems are discussed in terms of the density of states and molecular orbitals of the thiophene molecules adsorbed to the TiO2/MoS2 nanocomposites. It was also found that the doping of nitrogen atom is conductive to the interaction of thiophene with nanocomposite. Thus, it can be concluded that the interaction of thiophene with N-doped TiO2/MoS2 nanocomposite is more energetically favorable than the interaction with undoped nanocomposite. The sensing capability of TiO2/MoS2 toward thiophene detection was greatly increased upon nitrogen doping. These processes ultimately lead to the strong adsorption of thiophene on the N-doped TiO2/MoS2 nanocomposites, indicating potential applicability of these nanocomposites as novel gas sensors.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yingda Jiang ◽  
Sha Yang ◽  
Shuang Li ◽  
Wei Liu ◽  
Yonghao Zhao

Layered materials, such as graphene, have attracted increasing interests since they can be extensively used in gas sensors, spintronic devices, and transparent electrodes. Although larger size of graphene sheets has been fabricated, in reality, the existence of the defects in layered materials is almost inevitable during the manufacturing process. Here, we performed the state-of-the-art density-functional theory calculations to study the interactions between CO molecule and the pristine and defective graphene layers, with the aim of designing a CO gas sensor with higher sensitivity. The van der Waals interactions predominate the binding between the CO gas and the sensor, and also significantly enhance the stability of the system. The defective graphene strongly interacts with CO, and thus enhances the sensitivity of the graphene and further tunes the electronic and magnetic properties of the entire system. Our computed results clearly demonstrate that the defective graphene could be a good sensor for gas molecules.


2017 ◽  
Author(s):  
Marco Fronzi ◽  
Michael Nolan

<div>We use fi rst-principles Density Functional Theory calculations with inclusion of the Hubbard +U correction (DFT+U) on the Cu 3d states, to investigate the interaction of water with the CuO(111) surface. We compute adsorption energies and the stability of different water coverages, with a particular focus on the interaction of water with oxygen vacancy sites, and how vacancy stabilization occurs. We study energetics, geometry and electronic structure of relevant confi gurations finding that there are only small changes to the local geometry around the water adsorption site(s) and the electronic properties. The inclusion of van der Waals interactions has no signi ficant impact on the stability of water on CuO(111). We extend the analysis to include realistic environmental conditions within the ab-initio atomistic thermodynamics framework, which allows us to assess the stability of the water/copper-oxide system as a function of ambient conditions, and focus on three important surface processes: water adsorption/desorption on the stoichiometric surface, conditions for dissociation, and oxygen vacancy stabilization. </div>


2019 ◽  
Author(s):  
Yan Wang ◽  
Sagar Udyavara ◽  
Matthew Neurock ◽  
C. Daniel Frisbie

<div> <div> <div> <p> </p><div> <div> <div> <p>Electrocatalytic activity for hydrogen evolution at monolayer MoS2 electrodes can be enhanced by the application of an electric field normal to the electrode plane. The electric field is produced by a gate electrode lying underneath the MoS2 and separated from it by a dielectric. Application of a voltage to the back-side gate electrode while sweeping the MoS2 electrochemical potential in a conventional manner in 0.5 M H2SO4 results in up to a 140-mV reduction in overpotential for hydrogen evolution at current densities of 50 mA/cm2. Tafel analysis indicates that the exchange current density is correspondingly improved by a factor of 4 to 0.1 mA/cm2 as gate voltage is increased. Density functional theory calculations support a mechanism in which the higher hydrogen evolution activity is caused by gate-induced electronic charge on Mo metal centers adjacent the S vacancies (the active sites), leading to enhanced Mo-H bond strengths. Overall, our findings indicate that the back-gated working electrode architecture is a convenient and versatile platform for investigating the connection between tunable electronic charge at active sites and overpotential for electrocatalytic processes on ultrathin electrode materials.</p></div></div></div><br><p></p></div></div></div>


2019 ◽  
Author(s):  
Theodosios Famprikis ◽  
James Dawson ◽  
François Fauth ◽  
Emmanuelle Suard ◽  
Benoit Fleutot ◽  
...  

<div> <p>Solid electrolytes are crucial for next‑generation solid‑state batteries and Na<sub>3</sub>PS<sub>4</sub> is one of the most promising Na<sup>+</sup> conductors for such applications. At present, two phases of Na<sub>3</sub>PS<sub>4</sub> have been identified and it had been thought to melt above 500 °C. In contrast, we show that it remains solid above this temperature and transforms into a third polymorph, γ, exhibiting superionic behavior. We propose an orthorhombic crystal structure for γ‑Na<sub>3</sub>PS<sub>4</sub> based on scattering density analysis of diffraction data and density functional theory calculations. We show that the Na<sup>+</sup> superionic behavior is associated with rotational motion of the thiophosphate polyanions pointing to a rotor phase, based on <i>ab initio</i> molecular dynamics simulations and supported by high‑temperature synchrotron and neutron diffraction, thermal analysis and impedance spectroscopy. These findings are of importance for the development of new polyanion‑based solid electrolytes.</p> </div>


2019 ◽  
Author(s):  
Hassan Harb ◽  
Lee Thompson ◽  
Hrant Hratchian

Lanthanide hydroxides are key species in a variety of catalytic processes and in the preparation of corresponding oxides. This work explores the fundamental structure and bonding of the simplest lanthanide hydroxide, LnOH (Ln=La-Lu), using density functional theory calculations. Interestingly, the calculations predict that all structures of this series will be linear. Furthermore, these results indicate a valence electron configuration featuring an occupied sigma orbital and two occupied pi orbitals for all LnOH compounds, suggesting that the lanthanide-hydroxide bond is best characterized as a covalent triple bond.


2019 ◽  
Author(s):  
Hassan Harb ◽  
Lee Thompson ◽  
Hrant Hratchian

Lanthanide hydroxides are key species in a variety of catalytic processes and in the preparation of corresponding oxides. This work explores the fundamental structure and bonding of the simplest lanthanide hydroxide, LnOH (Ln=La-Lu), using density functional theory calculations. Interestingly, the calculations predict that all structures of this series will be linear. Furthermore, these results indicate a valence electron configuration featuring an occupied sigma orbital and two occupied pi orbitals for all LnOH compounds, suggesting that the lanthanide-hydroxide bond is best characterized as a covalent triple bond.


Sign in / Sign up

Export Citation Format

Share Document