scholarly journals Anti-Microbial, Anti-Oxidant, and α-Amylase Inhibitory Activity of Traditionally-Used Medicinal Herbs: A Comparative Analyses of Pharmacology, and Phytoconstituents of Regional Halophytic Plants’ Diaspora

Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5457
Author(s):  
Mohsen Al-Omar ◽  
Hamdoon Mohammed ◽  
Salman Mohammed ◽  
Essam Abd-Elmoniem ◽  
Yasser Kandil ◽  
...  

Halophytes are the category of plants growing under harsh conditions of super-salinity, and are wide-spread in the coastal Mediterranean climatic conditions and desert oasis. They are adept at surviving through maintaining excessive production of enzymatic, and non-enzymatic secondary metabolites, especially phenolics and flavonoids that primarily work as anti-oxidants and phytoalexins. Five major halophyte species growing in the kingdom’s Qassim’s high-salted desert regions were investigated for confirming their traditionally used biological activity of sugar-control and anti-infectious properties. In this context, the comparative presence of phenolics, and flavonoids together with anti-microbial, anti-oxidants, and the anti-diabetic potentials of the plants’ extracts were investigated through the α-amylase inhibition method. The highest concentrations of phenolics and flavonoids were detected in Salsola imbricata (360 mg/g of the extract as Gallic-Acid-Equivalents/GAE, and 70.5 mg/g of the extract as Rutin-Equivalents/RE). In contrast, the lowest concentrations of phenolics and flavonoids were detected in Salsola cyclophylla (126.6 mg/g GAE, and 20.5 mg/g RE). The halophytes were found rich in trace elements, a factor for water-retention in high-salinity plants, wherein iron and zinc elements were found comparatively in higher concentrations in Aeluropus lagopoides (4113 µg/kg, and 40.1 µg/kg, respectively), while the copper was detected in higher concentration (11.1 µg/kg) in S. imbricata, analyzed through Inductively Coupled Plasma Optical Emission Spectrometric (ICP-OES) analysis. The anti-oxidant potentials and α-amylase enzyme inhibition-based anti-diabetic activity of S. imbricata was significantly higher than the other halophytes under study, wherein S. cyclophylla exhibited the lowest level of α-amylase inhibition. The maximum DPPH radicals’ (52.47 mg/mL), and α-amylase inhibitions (IC50 22.98 µg/mL) were detected in A.lagopoides. The anti-microbial activity against the Methicillin-Resistant Staphylococcus aureus was strongly exhibited by Zygophyllum simplex (33 mm Inhibition Zone-Diameter, 50 µg/mL Minimum-Inhibitory-Concentration), while Escherichia coli, Enterococcus faecalis, and Candida albicans growths were moderately inhibited by Tamarix aphylla. The current findings exhibited significant differences among the locally distributed halophytic plants species with regards to their bioactivity levels, anti-oxidant potentials, and the presence of trace elements. The ongoing data corroborated the plants’ traditional uses in infections and diabetic conditions. The enhanced local distribution of the plants’ diaspora and higher density of occurrence of these plants species in this region, in comparison to their normal climatic condition’s counterparts, seemed to be affected by humans’ use of the species as part of the traditional and alternative medicine over a period of long time.

Author(s):  
Adel M Michael ◽  
Ahmed A Mohamed ◽  
Yousef A Abdelaziz ◽  
Nesma M Fahmy

Abstract Background Inductively coupled plasma is widely used for elemental analysis with the advantage of being eco-friendly since the discharge is free of contaminants. Objective A rapid, novel method was developed for the quantitation of trace elements using inductively coupled plasma with optical emission spectrometry.This method has the advantage of simultaneous calibration compared to the conventional method. Method The assay was carried out for iron, copper, zinc, and molybdenum using the linear regression model partial least-squares. Results The method was optimized and validated as per the International Conference on Harmonization guidelines, showing highly accurate and precise results. The linearity range was 0.25–4 ppm for all trace elements under investigation. The method was applied for the assay of the cited elements in non-chelated and amino acid chelated multi-mineral preparations in the Egyptian market with acceptable mean percent recovery. Conclusions In comparison with the official method by flame emission, statistical analysis showed no significant difference with Student’s t-test and F-values. Highlights Inductively coupled plasma is superior as all of the elements can be measured simultaneously. The method was found to have a high degree of specificity and can be easily applied in routine elemental analysis in laboratories.


2015 ◽  
Vol 30 (4) ◽  
pp. 936-940 ◽  
Author(s):  
Pao Li ◽  
Wensheng Cai ◽  
Xueguang Shao

With the help of standard signals, the signals of trace elements in overlapping ICP OES signals can be obtained by a non-negative immune algorithm and used for quantitative analysis.


Sign in / Sign up

Export Citation Format

Share Document