scholarly journals Tuning π-Acceptor/σ-Donor Ratio of the 2-Isocyanoazulene Ligand: Non-Fluorinated Rival of Pentafluorophenyl Isocyanide and Trifluorovinyl Isocyanide Discovered

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 981
Author(s):  
Mason D. Hart ◽  
John J. Meyers ◽  
Zachary A. Wood ◽  
Toshinori Nakakita ◽  
Jason C. Applegate ◽  
...  

Isocyanoazulenes (CNAz) constitute a relatively new class of isocyanoarenes that offers rich structural and electronic diversification of the organic isocyanide ligand platform. This article considers a series of 2-isocyano-1,3-X2-azulene ligands (X = H, Me, CO2Et, Br, and CN) and the corresponding zero-valent complexes thereof, [(OC)5Cr(2-isocyano-1,3-X2-azulene)]. Air- and thermally stable, X-ray structurally characterized 2-isocyano-1,3-dimethylazulene may be viewed as a non-benzenoid aromatic congener of 2,6-dimethyphenyl isocyanide (2,6-xylyl isocyanide), a longtime “workhorse” aryl isocyanide ligand in coordination chemistry. Single crystal X-ray crystallographic {Cr–CNAz bond distances}, cyclic voltametric {E1/2(Cr0/1+)}, 13C NMR {δ(13CN), δ(13CO)}, UV-vis {dπ(Cr) → pπ*(CNAz) Metal-to-Ligand Charge Transfer}, and FTIR {νN≡C, νC≡O, kC≡O} analyses of the [(OC)5Cr(2-isocyano-1,3-X2-azulene)] complexes provided a multifaceted, quantitative assessment of the π-acceptor/σ-donor characteristics of the above five 2-isocyanoazulenes. In particular, the following inverse linear relationships were documented: δ(13COtrans) vs. δ(13CN), δ(13COcis) vs. δ(13CN), and δ(13COtrans) vs. kC≡O,trans force constant. Remarkably, the net electron withdrawing capability of the 2-isocyano-1,3-dicyanoazulene ligand rivals those of perfluorinated isocyanides CNC6F5 and CNC2F3.

2004 ◽  
Vol 43 (16) ◽  
pp. 4802-4804 ◽  
Author(s):  
Robert P. Davies ◽  
Claire V. Francis ◽  
Andrew P. S. Jurd ◽  
M. Giovanna Martinelli ◽  
Andrew J. P. White ◽  
...  

1980 ◽  
Vol 33 (2) ◽  
pp. 313 ◽  
Author(s):  
PR Jefferies ◽  
BW Skelton ◽  
B Walter ◽  
AH White

Following the suggestion made earlier, on the basis of solution spectroscopy, that a number of eriostyl/nitrobenzoate compounds form charge-transfer self-complexes, a number of these have been investigated structurally by single-crystal X-ray diffraction methods in order to ascertain the presence or otherwise of such interactions in the solid state. The substances thus studied were eriostyl 3,5-dinitrobenzoate (1), eriostyl p-nitrobenzoate (2), tetrahydroeriostyl 3,5-dinitrobenzoate (3), and eriostemyl 3,5-dinitrobenzoate (4);* structure determinations in all cases, although displaying the presence of strong charge-transfer interactions from the two moieties of each molecule, show that the interactions in the solid state are intermolecular in nature.


1987 ◽  
Vol 40 (12) ◽  
pp. 2097 ◽  
Author(s):  
DJ Fuller ◽  
DL Kepert ◽  
BW Skelton ◽  
AH White

Crystal structure determinations of (LH)2(B10H10), (1), and (LH2)(B10H10), (2), L = 2,2'- bipyridine , have been carried out by single-crystal X-ray diffraction methods at 295 K, being refined by full-matrix least squares to residuals of 0.041, 0.047 for 1758, 1771 'observed' independent reflections respectively. Crystals of (1) are monoclinic, P21/n, a 12.040(7), b 17.71(1), c 11.142(4) �, β 101.78(4)�, Z 4. Crystals of (2) are monoclinic, P21/c, a 9.937(4), b 10.837(3), c 14.856(5) �, β 109 2l(3)�, Z 4. The colour of the compounds is accounted for by charge-transfer interactions of a novel type, namely between the positively charged cationic acid hydrogen atoms and the negatively charged non-apical hydrogen atoms of the anion. In yellow (1), these distances are 2.26(5) �, while in red (2), they are much shorter, being 1.89(4), 1.97(3) �.


2010 ◽  
Vol 6 (2) ◽  
pp. 111-116 ◽  
Author(s):  
Ahmad Mudzakir

A new series of ionic liquids based on 1,3-alkylmethyl-1,2,3-benzotriazolium cation has been prepared. The spectroscopic, physical and electrochemical characteristics of this family of salts have been investigated with respect to potential usage as ionic solvents, electrolytes and engineering fluids. Incorporation of diverse anions including weak coordinating anion and pseudohalide with this benzotriazolium cation produces ionic liquids with advantageously low melting points and good thermal stability. Thermal analyses of these very stable salts included the determination of melting points (-65 to 164 oC) and decomposition temperatures (up to 291 oC). The electrochemical windows of representative benzotriazolium species has been investigated by cyclic voltammetry and determined to be ~ 3 V. The X-ray single crystal and spectroscopic studies revealed that weak hydrogen-bonding interactions between the benzotriazolium ring protons and the anions are present both in the solid state as well as in solution.   Keywords: ionic liquids, X-ray single crystal, thermal analysis, electrochemical analysis, benzotriazolium salt


2019 ◽  
Vol 57 (4) ◽  
pp. 468
Author(s):  
Mai Thi Cam Truong ◽  
Chi Thi Thanh Nguyen

The reaction of [PdCl2(CH3CN)2] (1) with either 1,3-bis(2,4,6-trimethylphenyl)imidazolium chloride (IMes·HCl) or 1,3-bis(2,6-diisoproylphenyl)imidazolium chloride (IPr·HCl) in the present of Ag2O afforded two mixed monocarbene-CH3CN complexes, namely trans-[PdCl2(CH3CN)(IMes] (2) and trans-[PdCl2(CH3CN)(IPr)] (3), with the high yield (85-90%). The structure of 2 and 3 were elucidated by ESI mass, IR, 1H NMR and 13C NMR spectra. For 2, single-crystal X-ray diffraction study was also carried out. The results show that the CH3CN in 2 and 3 coordinates with Pd(II) via the N atom, the deprotonated imidazolium salts are bound up with Pd(II) via the C atom (NCHN) and occupy trans-position in comparison with the CH3CN.


1984 ◽  
Vol 37 (8) ◽  
pp. 1763
Author(s):  
IR Castleden ◽  
LM Engelhardt ◽  
SR Hall ◽  
AH White

The crystal structure of 8-hydroxy-1H-naphtho[2,1,8-mna]xanthen-1-one, C19H10O3, obtained as an indefinite methanolsolvate, has been determined at 295K by single-crystal X-ray diffraction methods, being refined by full matrix least squares to a residual of 0.056 for 892 independent 'observed' reflections. Crystals are monoclinic, P21/c, a 5.128(4), b 10.024(9), c 27.45(2) �, β 107.73(6)�, Z 4. The packing of the molecules is typically that of charge-transfer complexes, with an interplanar spacing of c.3.5 �.


Sign in / Sign up

Export Citation Format

Share Document