scholarly journals Modified Nucleosides, Nucleotides and Nucleic Acids via Click Azide-Alkyne Cycloaddition for Pharmacological Applications

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3100
Author(s):  
Daniela Perrone ◽  
Elena Marchesi ◽  
Lorenzo Preti ◽  
Maria Luisa Navacchia

The click azide = alkyne 1,3-dipolar cycloaddition (click chemistry) has become the approach of choice for bioconjugations in medicinal chemistry, providing facile reaction conditions amenable to both small and biological molecules. Many nucleoside analogs are known for their marked impact in cancer therapy and for the treatment of virus diseases and new targeted oligonucleotides have been developed for different purposes. The click chemistry allowing the tolerated union between units with a wide diversity of functional groups represents a robust means of designing new hybrid compounds with an extraordinary diversity of applications. This review provides an overview of the most recent works related to the use of click chemistry methodology in the field of nucleosides, nucleotides and nucleic acids for pharmacological applications.

2019 ◽  
Vol 55 (6) ◽  
pp. 731-750 ◽  
Author(s):  
Puja Saha ◽  
Deepanjan Panda ◽  
Jyotirmayee Dash

The Cu(i)-catalyzed azide and alkyne 1,3-dipolar cycloaddition (CuAAC), commonly known as the “click reaction”, has emerged as a versatile synthetic tool for targeting quadruplex nucleic acids.


2020 ◽  
Vol 27 (13) ◽  
pp. 2118-2132 ◽  
Author(s):  
Aysegul Hanikoglu ◽  
Hakan Ozben ◽  
Ferhat Hanikoglu ◽  
Tomris Ozben

: Elevated Reactive Oxygen Species (ROS) generated by the conventional cancer therapies and the endogenous production of ROS have been observed in various types of cancers. In contrast to the harmful effects of oxidative stress in different pathologies other than cancer, ROS can speed anti-tumorigenic signaling and cause apoptosis of tumor cells via oxidative stress as demonstrated in several studies. The primary actions of antioxidants in cells are to provide a redox balance between reduction-oxidation reactions. Antioxidants in tumor cells can scavenge excess ROS, causing resistance to ROS induced apoptosis. Various chemotherapeutic drugs, in their clinical use, have evoked drug resistance and serious side effects. Consequently, drugs having single-targets are not able to provide an effective cancer therapy. Recently, developed hybrid anticancer drugs promise great therapeutic advantages due to their capacity to overcome the limitations encountered with conventional chemotherapeutic agents. Hybrid compounds have advantages in comparison to the single cancer drugs which have usually low solubility, adverse side effects, and drug resistance. This review addresses two important treatments strategies in cancer therapy: oxidative stress induced apoptosis and hybrid anticancer drugs.


2021 ◽  
Author(s):  
Nicolò Zuin Fantoni ◽  
Afaf H. El-Sagheer ◽  
Tom Brown

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 556
Author(s):  
Bonwoo Koo ◽  
Haneul Yoo ◽  
Ho Jeong Choi ◽  
Min Kim ◽  
Cheoljae Kim ◽  
...  

The expanding scope of chemical reactions applied to nucleic acids has diversified the design of nucleic acid-based technologies that are essential to medicinal chemistry and chemical biology. Among chemical reactions, visible light photochemical reaction is considered a promising tool that can be used for the manipulations of nucleic acids owing to its advantages, such as mild reaction conditions and ease of the reaction process. Of late, inspired by the development of visible light-absorbing molecules and photocatalysts, visible light-driven photochemical reactions have been used to conduct various molecular manipulations, such as the cleavage or ligation of nucleic acids and other molecules as well as the synthesis of functional molecules. In this review, we describe the recent developments (from 2010) in visible light photochemical reactions involving nucleic acids and their applications in the design of nucleic acid-based technologies including DNA photocleaving, DNA photoligation, nucleic acid sensors, the release of functional molecules, and DNA-encoded libraries.


2007 ◽  
Vol 51 (6) ◽  
pp. 2028-2034 ◽  
Author(s):  
Federico Focher ◽  
Andrea Lossani ◽  
Annalisa Verri ◽  
Silvio Spadari ◽  
Andrew Maioli ◽  
...  

ABSTRACT Herpes B virus (B virus [BV]) is a macaque herpesvirus that is occasionally transmitted to humans where it can cause rapidly ascending encephalitis that is often fatal. To understand the low susceptibility of BV to the acyclonucleosides, we have cloned, expressed, and characterized the BV thymidine kinase (TK), an enzyme that is expected to “activate” nucleoside analogs. This enzyme is similar in sequence and properties to the TK of herpes simplex virus (HSV), i.e., it has a broad substrate range and low enantioselectivity and is sensitive to inhibitors of HSV TKs. The BV enzyme phosphorylates some modified nucleosides and acyclonucleosides and l enantiomers of thymidine and related antiherpetic analogs. However, the potent anti-HSV drugs acyclovir (ACV), ganciclovir (GCV), and 5-bromovinyldeoxyuridine were poorly or not phosphorylated by the BV enzyme under the experimental conditions. The antiviral activities of a number of marketed antiherpes drugs and experimental compounds were compared against BV strains and, for comparison, HSV type 1 (HSV-1) in Vero cell cultures. For most compounds tested, BV was found to be about as sensitive as HSV-1 was. However, BV was less sensitive to ACV and GCV than HSV-1 was. The abilities of thymidine analogs and acyclonucleosides to inhibit replication of BV in Vero cell culture were not always proportional to their substrate properties for BV TK. Our studies characterize BV TK for the first time and suggest new lead compounds, e.g., 5-ethyldeoxyuridine and pencyclovir, which may be superior to ACV or GCV as treatment for this emerging infectious disease.


RSC Advances ◽  
2016 ◽  
Vol 6 (26) ◽  
pp. 21979-22006 ◽  
Author(s):  
Ghodsi Mohammadi Ziarani ◽  
Zahra Hassanzadeh ◽  
Parisa Gholamzadeh ◽  
Shima Asadi ◽  
Alireza Badiei

Click chemistry is undoubtedly the most powerful 1,3-dipolar cycloaddition reaction in organic synthesis.


Synlett ◽  
2019 ◽  
Vol 30 (15) ◽  
pp. 1835-1839 ◽  
Author(s):  
Chihiro Kidou ◽  
Haruki Mizoguchi ◽  
Tatsuo Nehira ◽  
Akira Sakakura

Organoammonium salts of dipeptide-derived chiral triamines or diamines with TfOH catalyzed the enantioselective 1,3-dipolar cycloaddition reactions of α-acyloxyacroleins with nitrones to give the corresponding adducts in good yields (up to 96%) and with high diastereo- and enantioselectivities (up to 89% ee). Although α-(p-methoxybenzoyloxy)acrolein is rather unstable under the reaction conditions, α-(3-pyrroline-1-carbonyloxy)acrolein is stable enough to be smoothly converted into the corresponding adducts with the aid of the chiral organoammonium salt catalysts.


2020 ◽  
Vol 56 (76) ◽  
pp. 11263-11266
Author(s):  
Bryan P. Sutherland ◽  
Paige J. LeValley ◽  
Derek J. Bischoff ◽  
April M. Kloxin ◽  
Christopher J. Kloxin

A scalable synthetic strategy was developed towards the creation of sequence-defined DNA analogues employing thiol-Michael click chemistry and a soluble polymer support.


2016 ◽  
Vol 3 (9) ◽  
pp. 160090 ◽  
Author(s):  
Biswadip Banerji ◽  
K. Chandrasekhar ◽  
Sunil Kumar Killi ◽  
Sumit Kumar Pramanik ◽  
Pal Uttam ◽  
...  

‘Click reactions’ are the copper catalysed dipolar cycloaddition reaction of azides and alkynes to incorporate nitrogens into a cyclic hydrocarbon scaffold forming a triazole ring. Owing to its efficiency and versatility, this reaction and the products, triazole-containing heterocycles, have immense importance in medicinal chemistry. Copper is the only known catalyst to carry out this reaction, the mechanism of which remains unclear. We report here that the ‘click reactions’ can also be catalysed by silver halides in non-aqueous medium. It constitutes an alternative to the well-known CuAAC click reaction. The yield of the reaction varies on the type of counter ion present in the silver salt. This reaction exhibits significant features, such as high regioselectivity, mild reaction conditions, easy availability of substrates and reasonably good yields. In this communication, the findings of a new catalyst along with the effect of solvent and counter ions will help to decipher the still obscure mechanism of this important reaction.


Sign in / Sign up

Export Citation Format

Share Document