Hybrid Compounds & Oxidative Stress Induced Apoptosis in Cancer Therapy

2020 ◽  
Vol 27 (13) ◽  
pp. 2118-2132 ◽  
Author(s):  
Aysegul Hanikoglu ◽  
Hakan Ozben ◽  
Ferhat Hanikoglu ◽  
Tomris Ozben

: Elevated Reactive Oxygen Species (ROS) generated by the conventional cancer therapies and the endogenous production of ROS have been observed in various types of cancers. In contrast to the harmful effects of oxidative stress in different pathologies other than cancer, ROS can speed anti-tumorigenic signaling and cause apoptosis of tumor cells via oxidative stress as demonstrated in several studies. The primary actions of antioxidants in cells are to provide a redox balance between reduction-oxidation reactions. Antioxidants in tumor cells can scavenge excess ROS, causing resistance to ROS induced apoptosis. Various chemotherapeutic drugs, in their clinical use, have evoked drug resistance and serious side effects. Consequently, drugs having single-targets are not able to provide an effective cancer therapy. Recently, developed hybrid anticancer drugs promise great therapeutic advantages due to their capacity to overcome the limitations encountered with conventional chemotherapeutic agents. Hybrid compounds have advantages in comparison to the single cancer drugs which have usually low solubility, adverse side effects, and drug resistance. This review addresses two important treatments strategies in cancer therapy: oxidative stress induced apoptosis and hybrid anticancer drugs.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Georges Said ◽  
Marie Guilbert ◽  
Hamid Morjani ◽  
Roselyne Garnotel ◽  
Pierre Jeannesson ◽  
...  

Anticancer drug resistance is a multifactorial process that includes acquired and de novo drug resistances. Acquired resistance develops during treatment, while de novo resistance is the primary way for tumor cells to escape chemotherapy. Tumor microenvironment has been recently shown to be one of the important factors contributing to de novo resistance and called environment-mediated drug resistance (EMDR). Two forms of EMDR have been described: soluble factor-mediated drug resistance (SFM-DR) and cell adhesion-mediated drug resistance (CAM-DR). Anthracyclines, among the most potent chemotherapeutic agents, are widely used in clinics against hematopoietic and solid tumors. Their main mechanism of action relies on the inhibition of topoisomerase I and/or II and the induction of apoptosis. Beyond this well-known antitumor activity, it has been recently demonstrated that anthracyclines may display potent anti-invasive effects when used at subtoxic concentrations. In this paper, we will describe two particular modes of EMDR by which microenvironment may influence tumor-cell response to one of these anthracyclines, doxorubicin. The first one considers the influence of type I collagen on the antimigratory effect of doxorubicin (CAM-DR). The second considers the protection of tumor cells by thrombospondin-I against doxorubicin-induced apoptosis (SFM-DR).


Author(s):  
Amber M. Tavener ◽  
Megan C. Phelps ◽  
Richard L. Daniels

AbstractGlioblastoma (GBM) is a lethal astrocyte-derived tumor that is currently treated with a multi-modal approach of surgical resection, radiotherapy, and temozolomide-based chemotherapy. Alternatives to current therapies are urgently needed as its prognosis remains poor. Anthracyclines are a class of compounds that show great potential as GBM chemotherapeutic agents and are widely used to treat solid tumors outside the central nervous system. Here we investigate the cytotoxic effects of doxorubicin and other anthracyclines on GL261 glioma tumor cells in anticipation of novel anthracycline-based CNS therapies. Three methods were used to quantify dose-dependent effects of anthracyclines on adherent GL261 tumor cells, a murine cell-based model of GBM. MTT assays quantified anthracycline effects on cell viability, comet assays examined doxorubicin genotoxicity, and flow cytometry with Annexin V/PI staining characterized doxorubicin-induced apoptosis and necrosis. Dose-dependent reductions in GL261 cell viability were found in cells treated with doxorubicin (EC50 = 4.9 μM), epirubicin (EC50 = 5.9 μM), and idarubicin (EC50 = 4.4 μM). Comet assays showed DNA damage following doxorubicin treatments, peaking at concentrations of 1.0 μM and declining after 25 μM. Lastly, flow cytometric analysis of doxorubicin-treated cells showed dose-dependent induction of apoptosis (EC50 = 5.2 μM). Together, these results characterized the cytotoxic effects of anthracyclines on GL261 glioma cells. We found dose-dependent apoptotic induction; however at high concentrations we find that cell death is likely necrotic. Our results support the continued exploration of anthracyclines as compounds with significant potential for improved GBM treatments.


Small ◽  
2021 ◽  
pp. 2008210
Author(s):  
Ahram Kim ◽  
Chiaki Yonemoto ◽  
Chitho P. Feliciano ◽  
Babita Shashni ◽  
Yukio Nagasaki

Author(s):  
Rajib Hossain ◽  
Muhammad Torequl Islam ◽  
Mohammad S. Mubarak ◽  
Divya Jain ◽  
Rasel Khan ◽  
...  

Background: Cancer is a global threat to humans and a leading cause of death worldwide. Cancer treatment includes, among other things, the use of chemotherapeutic agents, compounds that are vital for treating and preventing cancer. However, chemotherapeutic agents produce oxidative stress along with other side effects that would affect the human body. Objective: To reduce the oxidative stress of chemotherapeutic agents in cancer and normal cells by naturally derived compounds with anti-cancer properties, and protect normal cells from the oxidation process. Therefore, the need to develop more potent chemotherapeutics with fewer side effects has become increasingly important. Method: Recent literature dealing with the antioxidant and anticancer activities of the naturally naturally-derived compounds: morin, myricetin, malvidin, naringin, eriodictyol, isovitexin, daidzein, naringenin, chrysin, and fisetin has been surveyed and examined in this review. For this, data were gathered from different search engines, including Google Scholar, ScienceDirect, PubMed, Scopus, Web of Science, Scopus, and Scifinder, among others. Additionally, several patient offices such as WIPO, CIPO, and USPTO were consulted to obtain published articles related to these compounds. Result: Numerous plants contain flavonoids and polyphenolic compounds such as morin, myricetin, malvidin, naringin, eriodictyol, isovitexin, daidzein, naringenin, chrysin, and fisetin, which exhibit ‎antioxidant, anti-inflammatory, and anti-carcinogenic actions via several mechanisms. These compounds show sensitizers of cancer cells and protectors of healthy cells. Moreover, these compounds can reduce oxidative stress, which is accelerated by chemotherapeutics and exhibit a potent anticancer effect on cancer cells. Conclusions: Based on these findings, more research is recommended to explore and evaluate such flavonoids and polyphenolic compounds.


Author(s):  
Xinjie Liang ◽  
Xuefei Bao ◽  
Guoliang Chen

: SET protein is a multi-functional oncoprotein that is ubiquitously expressed in most tumor cells. Dysregulation of SET has been associated with many types of cancer. Due to ever-accumulating evidence of its strong correlation with both poor prognosis and drug resistance, the targeting of SET is starting to be explored. SET is currently regarded as a potential target for cancer therapy, and several inhibitors are being developed for clinical trials. In this review, the physiological and pathological functions of SET, as well as its antagonists, will be discussed along with the prospects and challenges involved with translating SET inhibitors into bona fide therapeutic options.


Biomolecules ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1040 ◽  
Author(s):  
Milad Ashrafizadeh ◽  
Hui Li Ang ◽  
Ebrahim Rahmani Moghadam ◽  
Shima Mohammadi ◽  
Vahideh Zarrin ◽  
...  

Molecular signaling pathways involved in cancer have been intensively studied due to their crucial role in cancer cell growth and dissemination. Among them, zinc finger E-box binding homeobox-1 (ZEB1) and -2 (ZEB2) are molecules that play vital roles in signaling pathways to ensure the survival of tumor cells, particularly through enhancing cell proliferation, promoting cell migration and invasion, and triggering drug resistance. Importantly, ZEB proteins are regulated by microRNAs (miRs). In this review, we demonstrate the impact that miRs have on cancer therapy, through their targeting of ZEB proteins. MiRs are able to act as onco-suppressor factors and inhibit the malignancy of tumor cells through ZEB1/2 down-regulation. This can lead to an inhibition of epithelial-mesenchymal transition (EMT) mechanism, therefore reducing metastasis. Additionally, miRs are able to inhibit ZEB1/2-mediated drug resistance and immunosuppression. Additionally, we explore the upstream modulators of miRs such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as these regulators can influence the inhibitory effect of miRs on ZEB proteins and cancer progression.


Blood ◽  
1997 ◽  
Vol 90 (8) ◽  
pp. 3118-3129 ◽  
Author(s):  
Marek Los ◽  
Ingrid Herr ◽  
Claudia Friesen ◽  
Simone Fulda ◽  
Klaus Schulze-Osthoff ◽  
...  

Abstract The cytotoxic effect of anticancer drugs has been shown to involve induction of apoptosis. We report here that tumor cells resistant to CD95 (APO-1/Fas) -mediated apoptosis were cross-resistant to apoptosis-induced by anticancer drugs. Apoptosis induced in tumor cells by cytarabine, doxorubicin, and methotrexate required the activation of ICE/Ced-3 proteases (caspases), similarly to the CD95 system. After drug treatment, a strong increase of caspase activity was found that preceded cell death. Drug-induced activation of caspases was also found in ex vivo-derived T-cell leukemia cells. Resistance to cell death was conferred by a peptide caspase inhibitor and CrmA, a poxvirus-derived serpin. The peptide inhibitor was effective even if added several hours after drug treatment, indicating a direct involvement of caspases in the execution and not in the trigger phase of drug action. Drug-induced apoptosis was also strongly inhibited by antisense approaches targeting caspase-1 and -3, indicating that several members of this protease family were involved. CD95-resistant cell lines that failed to activate caspases upon CD95 triggering were cross-resistant to drug-mediated apoptosis. Our data strongly support the concept that sensitivity for drug-induced cell death depends on intact apoptosis pathways leading to activation of caspases. The identification of defects in caspase activation may provide molecular targets to overcome drug resistance in tumor cells.


2017 ◽  
Vol 5 (48) ◽  
pp. 9477-9481 ◽  
Author(s):  
Yuqing Niu ◽  
Florian J. Stadler ◽  
Tao He ◽  
Xingcai Zhang ◽  
Yingjie Yu ◽  
...  

Smart fluorescent polyurethane microcapsules with high tumor cell internalization, triggered release were developed for precision real-time monitoring cancer therapy.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1593-1593
Author(s):  
Tanyel Kiziltepe ◽  
Kenji Ishitsuka ◽  
Teru Hideshima ◽  
Noopur Raje ◽  
Norihiko Shiraishi ◽  
...  

Abstract Multiple myeloma (MM) is currently an incurable hematological malignancy. A major reason for the failure of currently existing therapies is the chemotherapeutic resistance acquired by the MM cells upon treatment. Overexpression of glutathione S-transferases (GST) has been shown as one possible mechanism of anti-cancer drug resistance in a broad spectrum of tumor cells. JS-K (O2-(2,4-Dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate) belongs to a class of pro-drugs which are designed to release nitric oxide (NO) on reaction with GST. JS-K can possibly turn GST overexpression to the tumor’s disadvantage by (1) consuming intracellular GSH and preventing drug inactivation; and (2) by exposing tumor cells to high intracellular concentrations of NO. JS-K has potent in vitro and in vivo anti-leukemic activity. The purpose of the present study is to examine the biological effects of JS-K on human MM cells. We demonstrate that JS-K has significant in vitro cytotoxicity on MM cell lines, with an IC50 of 0.3-2 mM at 48 hours. JS-K also induces cytotoxicity on cell lines that are resistant to conventional chemotherapy (i.e., MM1R, RPMI-Dox40, RPMI-LR5, RPMI-MR20). Importantly, no cytotoxic effects of JS-K were detected on peripheral blood mononuclear cells (PBMNC) obtained from healthy volunteers at these doses. Moreover, JS-K could overcome the survival and growth advantages conferred by interleukin-6 (IL-6) and insulin-like growth factor-1 (IGF-1), or by adherence of MM cells to bone marrow stromal cells (BMSC). JS-K caused a transient G2/M arrest followed by apoptosis, as determined by flow cytometric analysis using PI, Annexin V and Apo2.7 staining. JS-K-induced apoptosis was associated with caspase 8, 7, 9 and 3 activation. Interestingly, Fas was upregulated by JS-K, suggesting the involvement of death receptor pathway in induction of apoptosis. JS-K also triggered Mcl-1 cleavage and Bcl-2 phosphorylation, suggesting the involvement of mitochondrial pathway. In addition, apoptosis inducing factor (AIF), endonuclease G (EndoG) and cytochrome c were released into the cytosol during apoptosis. Taken together, these findings suggest the involvement of both intrinsic and extrinsic apoptotic pathways in JS-K-induced apoptosis in MM cells. In summary, our studies demonstrate that JS-K induces apoptosis and overcomes in vitro drug resistance in MM cells. Therefore, JS-K is a novel compound which carries significant potential to be included in the repertoire of existing treatment modalities for MM. Ongoing studies are delineating the mechanism of action of JS-K to provide the preclinical rationale for combination therapies to overcome drug resistance and improve patient outcome.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4783-4783
Author(s):  
Hirokazu Miki ◽  
Shuji Ozaki ◽  
Osamu Tanaka ◽  
Shiro Fujii ◽  
Shingen Nakamura ◽  
...  

Abstract Multiple myeloma (MM) is a plasma cell malignancy characterized by the accumulation of neoplastic plasma cells in the bone marrow. Although new classes of agents such as thalidomide, lenalidomide, and bortezomib have shown marked anti-MM activity in clinical settings, MM remains an incurable disease due to increased resistance to these agents. Therefore, alternative approaches are necessary to overcome drug resistance in MM. KRN5500 is a new derivative of spicamycin produced by Streptomyces alanosinicus (Kirin Pharma, Tokyo, Japan). This drug potently decreases protein synthesis and inhibits cell growth in human tumor cell lines both in vitro and in vivo. Several phase I studies of KRN5500 were conducted in patients with solid tumors, which showed Cmax values of 1000–3000 nM at the maximum tolerated doses. However, no objective anti-tumor response to KRN5500 alone was observed in these patients. In this study, we examined the anti-tumor activity of KRN5500 against MM cells and evaluated its therapeutic potential in combination with other anti-MM agents. MM cell lines and freshly-isolated MM cells were incubated with various concentrations of KRN5500 for 24 hours. Cell proliferation assay showed marked inhibition of cell growth in MM cells such as RPMI 8226, KMS12-BM, and UTMC-2 (IC50 = 10–40 nM), and U266, MM.1S, and primary MM cells (IC50 = 500–1000 nM). Importantly, a chemotherapy-resistant subclone of RPMI 8226 had a similar sensitivity to KRN5500. Annexin V/propidium iodide staining confirmed that KRN5500 induced apoptosis of MM cells in a dose- and time-dependent manner. Moreover, cleavage of poly (ADP-ribose) polymerase (PARP) was detected after 24 hours with only modest activation of caspase-8, -9, and -3 by immunoblotting. Flow cytometric analysis of anti-apoptotic proteins revealed that apoptosis induced by KRN5500 was associated with down-regulation of Mcl-1 and Bcl-2 expression. To determine the effect of KRN5500 on the unfolded protein response (UPR), splicing of XBP-1 mRNA was analyzed by reverse transcription-polymerase chain reaction. In response to stimulation with KRN5500, splicing of XBP-1 mRNA occurred after 24 hours in RPMI 8226 cells, suggesting that KRN5500-induced apoptosis is mediated in part by the inhibition of UPR. Furthermore, synergistic effects on MM cells were observed when KRN5500 was combined with anti-MM agents including melphalan, dexamethasone, and bortezomib. These results suggest that KRN5500 induces apoptosis in MM cells mainly by the caspase-independent pathway and that its unique mechanism of action provides a valuable therapeutic option to overcome drug resistance in patients with MM.


Sign in / Sign up

Export Citation Format

Share Document