scholarly journals Metabolic Profiling and Quantitative Analysis of Cerebrospinal Fluid Using Gas Chromatography–Mass Spectrometry: Current Methods and Future Perspectives

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3597
Author(s):  
Alisa Pautova ◽  
Natalia Burnakova ◽  
Alexander Revelsky

Cerebrospinal fluid is a key biological fluid for the investigation of new potential biomarkers of central nervous system diseases. Gas chromatography coupled to mass-selective detectors can be used for this investigation at the stages of metabolic profiling and method development. Different sample preparation conditions, including extraction and derivatization, can be applied for the analysis of the most of low-molecular-weight compounds of the cerebrospinal fluid, including metabolites of tryptophan, arachidonic acid, glucose; amino, polyunsaturated fatty and other organic acids; neuroactive steroids; drugs; and toxic metabolites. The literature data analysis revealed the absence of fully validated methods for cerebrospinal fluid analysis, and it presents opportunities for scientists to develop and validate analytical protocols using modern sample preparation techniques, such as microextraction by packed sorbent, dispersive liquid–liquid microextraction, and other potentially applicable techniques.

2014 ◽  
Vol 76 (4) ◽  
pp. 517-522 ◽  
Author(s):  
Tetsuya HASEGAWA ◽  
Maho SUMITA ◽  
Yusuke HORITANI ◽  
Reo TAMAI ◽  
Katsuhiro TANAKA ◽  
...  

2020 ◽  
Vol 16 (8) ◽  
pp. 989-1019
Author(s):  
Habibur Rahman ◽  
S.K. Manirul Haque ◽  
Masoom Raza Siddiqui

Background: Schizophrenia is a severe mental illness that affects more than twenty-one million people throughout the world. Schizophrenia also causes early death. Schizophrenia and other related psychotic ailments are controlled by the prescription of antipsychotic drugs, which act by blocking certain chemical receptors in the brain and thus relieves the symptoms of psychotic disorder. These drugs are present in the different dosage forms in the market and provided in a certain amount as per the need of the patients. Objective: Since such medications treat mental disorders, it is very important to have a perfect and accurate dose so that the risk factor is not affected by a higher or lower dose, which is not sufficient for the treatment. For accurate assay of these kinds of drugs, different analytical methods were developed ranging from older spectrophotometric techniques to latest hyphenated methods. Results: The current review highlights the role of different analytical techniques that were employed in the determination and identification of antipsychotic drugs and their metabolites. Techniques such as spectrophotometry, fluorimetry, liquid chromatography, liquid chromatography-mass spectrometry, gas chromatography, and gas chromatography-mass spectrometry employed in the method development of such antipsychotic drugs were reported in the review. Different metabolites, identified using the hyphenated techniques, were also mentioned in the review. The synthesis pathways of few of the metabolites were mentioned. Conclusion: The review summarizes the analyses of different antipsychotic drugs and their metabolites. A brief introduction of illnesses and their symptoms and possible medications were highlighted. Synthesis pathways of the associated metabolites were also mentioned.


2007 ◽  
Vol 13 ◽  
pp. 189-189
Author(s):  
H. Hahn ◽  
O. Fiehn ◽  
M.A. Mcmanus ◽  
D.B. Scott

Metabolic profiling using gas-chromatography mass spectrometry was performed for endophyte-infected (E+) and corresponding endophyte-free (E-) clones of two ryegrass genotypes cultivated under sufficient water supply and drought stress. In total, 243 metabolites representing both known and unknown compounds were analysed for samples taken at the end of the drought stress period and after rewatering (n=10 replications per level of genotype, endophyte infection, and water supply).


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Hsiu-Chuan Yen ◽  
Hsing-Ju Wei ◽  
Ting-Wei Chen

F2-isoprostanes (F2-IsoPs) are a gold marker of lipid peroxidationin vivo, whereas F4-neuroprostanes (F4-NPs) measured in cerebrospinal fluid (CSF) or brain tissue selectively indicate neuronal oxidative damage. Gas chromatography/negative-ion chemical-ionization mass spectrometry (GC/NICI-MS) is the most sensitive and robust method for quantifying these compounds, which is essential for CSF samples because abundance of these compounds in CSF is very low. The present study revealed potential interferences on the analysis of F2-IsoPs and F4-NPs in CSF by GC/NICI-MS due to the use of improper analytical methods that have been employed in the literature. First, simultaneous quantification of F2-IsoPs and F4-NPs in CSF samples processed for F4-NPs analysis could cause poor chromatographic separation and falsely higher F2-IsoPs values for CSF samples with high levels of F2-IsoPs and F4-NPs. Second, retention of unknown substances in GC columns from CSF samples during F4-NPs analysis and from plasma samples during F2-IsoPs analysis might interfere with F4-NPs analysis of subsequent runs, which could be solved by holding columns at a high temperature for a period of time after data acquisition. Therefore, these special issues should be taken into consideration when performing analysis of F2-IsoPs and F4-NPs in CSF to avoid misleading results.


Sign in / Sign up

Export Citation Format

Share Document