scholarly journals Non-Occupational Exposure to Pesticides: Experimental Approaches and Analytical Techniques (from 2019)

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3688
Author(s):  
Lucía Vera-Herrera ◽  
Daniele Sadutto ◽  
Yolanda Picó

Background: Pesticide residues are a threat to the health of the global population, not only to farmers, applicators, and other pesticide professionals. Humans are exposed through various routes such as food, skin, and inhalation. This study summarizes the different methods to assess and/or estimate human exposure to pesticide residues of the global population. Methods: A systematic search was carried out on Scopus and web of science databases of studies on human exposure to pesticide residues since 2019. Results: The methods to estimate human health risk can be categorized as direct (determining the exposure through specific biomarkers in human matrices) or indirect (determining the levels in the environment and food and estimating the occurrence). The role that analytical techniques play was analyzed. In both cases, the application of generic solvent extraction and solid-phase extraction (SPE) clean-up, followed by liquid or gas chromatography coupled to mass spectrometry, is decisive. Advances within the analytical techniques have played an unquestionable role. Conclusions: All these studies have contributed to an important advance in the knowledge of analytical techniques for the detection of pesticide levels and the subsequent assessment of nonoccupational human exposure.

2019 ◽  
Vol 6 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Ivo Safarik ◽  
Jitka Prochazkova ◽  
Eva Baldikova ◽  
Kristyna Pospiskova

Magnetically responsive materials have found many important applications in analytical chemistry. In this short review the basic information about Magnetic solid phase extraction and Magnetic textile solid phase extraction is given. These analytical techniques enable to preconcentrate target biologically active compounds or pollutants from water samples. Both procedures enable to lower the limit of detection using conventional analytical procedures.


1996 ◽  
Vol 79 (5) ◽  
pp. 1209-1214 ◽  
Author(s):  
Frank J Schenck ◽  
Lori Calderon ◽  
Lynda V Podhorniak

Abstract A rapid, multiresidue solid-phase extraction (SPE) technique for determination of organochlorine pesticide and polychlorinated biphenyl (PCB) residues in nonfatty fish was modified for use with fatty fish. In the modified procedures, samples are extracted with acetonitrile, and the extract is cleaned up with both C18 and Florisil SPE columns. Residues are determined by gas chromatography with electron capture detection. The original method was modified for use with fatty fish by reducing the amount of tissue extracted and by using an improved Florisil SPE cleanup. Recovery data are presented for 24 fortified organochlorine pesticide residues (0.12 ppm) and 3 fortified PCB residues (0.80 ppm) from flounder, bluefish, and shad samples, which contained 0.8,5.4, and 22.6% fat, respectively. For the 3 types of fish, recoveries of 23 of 24 fortified organochlorine pesticide residues ranged from 55 to 129%, and recoveries of 3 fortified PCB residues ranged from 55 to 104%. There were no significant differences in recovery based on fish species and/or fat content for the majority of residues studied. This SPE method and the official AOAC method yielded comparable results for fish containing incurred organochlorine residues.


Sign in / Sign up

Export Citation Format

Share Document