scholarly journals Some Novel Cobalt Diphenylphosphine Complexes: Synthesis, Characterization, and Behavior in the Polymerization of 1,3-Butadiene

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4067
Author(s):  
Giovanni Ricci ◽  
Giuseppe Leone ◽  
Giorgia Zanchin ◽  
Benedetta Palucci ◽  
Alessandra Forni ◽  
...  

Some novel cobalt diphenylphosphine complexes were synthesized by reacting cobalt(II) chloride with (2-methoxyethyl)diphenylphosphine, (2-methoxyphenyl)diphenylphosphine, and 2-(1,1-dimethylpropyl)-6-(diphenylphosphino)pyridine. Single crystals suitable for X-ray diffraction studies were obtained for the first two complexes, and their crystal structure was determined. The novel compounds were then used in association with methylaluminoxane (MAO) for the polymerization of 1,3-butadiene, and their behavior was compared with that exhibited in the polymerization of the same monomer by the systems CoCl2(PnPrPh2)2/MAO and CoCl2(PPh3)2/MAO. Some significant differences were observed depending on the MAO/Co ratio used, and a plausible interpretation for such a different behavior is proposed.

IUCrData ◽  
2019 ◽  
Vol 4 (11) ◽  
Author(s):  
Artem V. Malin ◽  
Sergei I. Ivlev ◽  
Roman V. Ostvald ◽  
Florian Kraus

Single crystals of rubidium tetrafluoridobromate(III), RbBrF4, were grown by melting and recrystallizing RbBrF4 from its melt. This is the first determination of the crystal structure of RbBrF4 using single-crystal X-ray diffraction data. We confirmed that the structure contains square-planar [BrF4]− anions and rubidium cations that are coordinated by F atoms in a square-antiprismatic manner. The compound crystallizes in the KBrF4 structure type. Atomic coordinates and bond lengths and angles were determined with higher precision than in a previous report based on powder X-ray diffraction data [Ivlev et al. (2015). Z. Anorg. Allg. Chem. 641, 2593–2598].


2018 ◽  
Vol 74 (8) ◽  
pp. 936-943
Author(s):  
Galina V. Kiriukhina ◽  
Olga V. Yakubovich ◽  
Ekaterina M. Kochetkova ◽  
Olga V. Dimitrova ◽  
Anatoliy S. Volkov

Caesium manganese hexahydrate phosphate, CsMn(H2O)6(PO4), was synthesized under hydrothermal conditions. Its crystal structure was determined from single-crystal X-ray diffraction data. The novel phase crystallizes in the hexagonal space group P63 mc and represents the first manganese member in the struvite morphotropic series, AM(H2O)6(TO4). Its crystal structure is built from Mn(H2O)6 octahedra and PO4 tetrahedra linked into a framework via hydrogen bonding. The large Cs atoms are encapsulated in the framework cuboctahedral cavities. It is shown that the size of the A + ionic radius within the morphotropic series AM(H2O)6(XO4) results is certain types of crystal structures and affects the values of the unit-cell parameters. Structural relationships with Na(H2O)Mg(H2O)6(PO4) and the mineral hazenite, KNa(H2O)2Mg2(H2O)12(PO4)2, are discussed.


Author(s):  
Srinivasa Thimmaiah ◽  
Zachary Tener ◽  
Tej N. Lamichhane ◽  
Paul C. Canfield ◽  
Gordon J. Miller

AbstractThe γ-region of the Mn–Al phase diagram between 45 and 70 at.% Al was re-investigated by a combination of powder and single crystal X-ray diffraction as well as EDS analysis to establish the distribution of Mn and Al atoms. Single crystals of γ-Mn


2019 ◽  
Vol 75 (5) ◽  
pp. 504-507 ◽  
Author(s):  
Hui-Ru Chen

Excellent fluorescence properties are exhibited by d 10 metal compounds. The novel three-dimensional ZnII coordination framework, poly[[{μ2-bis[4-(2-methyl-1H-imidazol-1-yl)phenyl] ether-κ2 N 3:N 3′}(μ2-furan-2,5-dicarboxylato-κ2 O 2:O 5)zinc(II)] 1.76-hydrate], {[Zn(C6H2O5)(C20H18N4O)]·1.76H2O} n , has been prepared and characterized using IR spectroscopy, elemental analysis and single-crystal X-ray diffraction. The crystal structure analysis revealed that the compound exhibits a novel fourfold interpenetrating diamond-like network. This polymer also displays a strong fluorescence emission in the solid state at room temperature.


2007 ◽  
Vol 62 (6) ◽  
pp. 783-790 ◽  
Author(s):  
Carolin Wallenhorst ◽  
Kirill V. Axenov ◽  
Joseph S. M. Samec ◽  
Roland Fröhlich ◽  
Gerhard Erker

Reaction of the doubly deprotonated pyridine 2,6-dicarboxamido ligand (1) with (PCy3)2Cl2 Ru=CHPh (3a) in THF gave a mixture of (lig)(PCy3)Ru=CHPh isomers (4). The pentane soluble N,N,O-4 isomer was isolated by extraction and characterized by X-ray diffraction. The O,N, O-4 isomer was identified in the residue. Single crystals of the closely related complex (lig)(NHC) Ru=CHPh, O,N,O-5, were obtained from the reaction of 1 with (NHC)(PCy3)Cl2Ru=CHPh (3b) and used for the X-ray crystal structure analysis of the system


1992 ◽  
Vol 47 (8) ◽  
pp. 1075-1078 ◽  
Author(s):  
Karin Ruhlandt-Senge ◽  
Ulrich Müller

When hexymethylbenzene-cyclopentadienyl-iron reacts with ozone in dichloromethane, the title compound is one of the products. Its crystal structure was determined by X-ray diffraction (R = 0.145 for 1412 unique reflexions). Crystal data: a = 1815.1(8), b = 1314.8(5), c = 1823.0(8) pm, space group Pbca, Z = 8. The sandwich-like [η6-C6Me6Fe-η5-C5H5]+ ions exhibit large thermal motions, and the CH2C12 molecules are disordered in two orientations. The novel [Fe2Cl6]2- ion has the structure of two tetrahedra sharing an edge. Its IR spectrum is reported.


2004 ◽  
Vol 82 (2) ◽  
pp. 301-305 ◽  
Author(s):  
Kenneth CW Chong ◽  
Brian O Patrick ◽  
John R Scheffer

When crystals of 9-tricyclo[4.4.1.0]undecalyl-4-(carbomethoxy)phenyl ketone (1) were allowed to stand in the dark for extended periods of time at room temperature, the compound underwent a thermal reaction — the enolene rearrangement — to afford enol 2. The crystals remained transparent and appeared unchanged in shape as the reaction proceeded. X-ray diffraction data were collected on single crystals containing 17%, 25%, 66%, and 100% of the enol. The crystal structure of a simple enol was obtained via this novel single-crystal-to-single-crystal enolene rearrangement.Key words: single crystal, thermal, rearrangement, enol, enolene.


2021 ◽  
Vol 26 (1(77)) ◽  
pp. 16-25
Author(s):  
Yu. I. Slyvka ◽  
E. A. Goreshnik ◽  
N. T. Pokhodylo ◽  
М. G. Mys’kiv

This work is focused on the synthesis and structure characterization of the novel Cu(I) π-complex [Cu2(Thiaz1)2(ClO4)2] (1) with 2-allylamino-5-methyl-1,3,4-thiadiazole (Thiaz1) ligand. The crystals of the compound were obtained by means of the alternating-current electrochemical technique and studied using single crystal X-ray diffraction. The crystal structure of the complex 1 is constructed from the centrosymmetric dimers, in which two copper(I) ions are coordinated by two Thiaz1 molecules through thiadiazole N atoms and allylic C=C bond. Energy framework computational analysis for structure 1 has been performed.  


2020 ◽  
Vol 76 (8) ◽  
pp. 1369-1372
Author(s):  
Abdessalem Badri ◽  
Inmaculada Alvarez-Serrano ◽  
María Luisa López ◽  
Mongi Ben Amara

Na2.22Mn0.87In1.68(PO4)3, sodium manganese indium tris(phosphate) (2.22/0.87/1.68), was obtained in the form of single crystals by a flux method and was structurally characterized by single-crystal X-ray diffraction. The compound belongs to the alluaudite structure type (space group C2/c) with general formula X(2)X(1)M(1)M(2)2(PO4)3. The X(2) and X(1) sites are partially occupied by sodium [occupancy 0.7676 (17) and 1/2] while the M(1) and M(2) sites are fully occupied within a mixed distribution of sodium/manganese(II) and manganese(II)/indium, respectively. The three-dimensional anionic framework is built up on the basis of M(2)2O10 dimers that share opposite edges with M(1)O6 octahedra, thus forming infinite chains extending parallel to [10\overline{1}]. The linkage between these chains is ensured by PO4 tetrahedra through common vertices. The three-dimensional network thus constructed delimits two types of hexagonal channels, resulting from the catenation of M(2)2O10 dimers, M(1)O6 octahedra and PO4 tetrahedra through edge- and corner-sharing. The channels are occupied by Na+ cations with coordination numbers of seven and eight.


Sign in / Sign up

Export Citation Format

Share Document