scholarly journals Production of Minor Ginsenosides C-K and C-Y from Naturally Occurring Major Ginsenosides Using Crude β-Glucosidase Preparation from Submerged Culture of Fomitella fraxinea

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4820
Author(s):  
Dae-Woon Kim ◽  
Won-Jae Lee ◽  
Yoseph Asmelash Gebru ◽  
Jitendra Upadhyaya ◽  
Sung-Ryong Ko ◽  
...  

Minor ginsenosides, such as compounds (C)-K and C-Y, possess relatively better bioactivity than those of naturally occurring major ginsenosides. Therefore, this study focused on the biotransformation of major ginsenosides into minor ginsenosides using crude β-glucosidase preparation isolated from submerged liquid culture of Fomitella fraxinea (FFEP). FFEP was prepared by ammonium sulfate (30–80%) precipitation from submerged culture of F. fraxinea. FFEP was used to prepare minor ginsenosides from protopanaxadiol (PPD)-type ginsenoside (PPDG-F) or total ginsenoside fraction (TG-F). In addition, biotransformation of major ginsenosides into minor ginsenosides as affected by reaction time and pH were investigated by TLC and HPLC analyses, and the metabolites were also identified by UPLC/negative-ESI-Q-TOF-MS analysis. FFEP biotransformed ginsenosides Rb1 and Rc into C-K via the following pathways: Rd → F2 → C-K for Rb1 and both Rd → F2→ C-K and C-Mc1 → C-Mc → C-K for Rc, respectively, while C-Y is formed from Rb2 via C-O. FFEP can be applied to produce minor ginsenosides C-K and C-Y from PPDG-F or TG-F. To the best of our knowledge, this study is the first to report the production of C-K and C-Y from major ginsenosides by basidiomycete F. fraxinea.

2018 ◽  
Vol 24 (6) ◽  
pp. 624-629 ◽  
Author(s):  
M. Oviaño ◽  
B. Rodríguez-Sánchez ◽  
M. Gómara ◽  
L. Alcalá ◽  
E. Zvezdanova ◽  
...  

Author(s):  
M. Vishnu Sreejith ◽  
K.S. Aradhana ◽  
M. Varsha ◽  
M.K. Cyrus ◽  
C.T. Aravindakumar ◽  
...  

2006 ◽  
Vol 36 (4-5) ◽  
pp. 517-527 ◽  
Author(s):  
Jürgen Schiller ◽  
Rosmarie Süß ◽  
Beate Fuchs ◽  
Matthias Müller ◽  
Marijana Petković ◽  
...  
Keyword(s):  

2012 ◽  
Vol 60 (19) ◽  
pp. 5013-5022 ◽  
Author(s):  
Wei-Ming Chai ◽  
Yan Shi ◽  
Hui-Ling Feng ◽  
Ling Qiu ◽  
Hai-Chao Zhou ◽  
...  

Author(s):  
Hanene Benyahia ◽  
Basma Ouarti ◽  
Adama Zan Diarra ◽  
Mehdi Boucheikhchoukh ◽  
Mohamed Nadir Meguini ◽  
...  

Abstract Lice pose major public and veterinary health problems with economic consequences. Their identification is essential and requires the development of an innovative strategy. MALDI-TOF MS has recently been proposed as a quick, inexpensive, and accurate tool for the identification of arthropods. Alcohol is one of the most frequently used storage methods and makes it possible to store samples for long periods at room temperature. Several recent studies have reported that alcohol alters protein profiles resulting from MS analysis. After preliminary studies on frozen lice, the purpose of this research was to evaluate the influence of alcohol preservation on the accuracy of lice identification by MALDI-TOF MS. To this end, lice stored in alcohol for variable periods were submitted for MS analysis and sample preparation protocols were optimized. The reproducibility and specificity of the MS spectra obtained on both these arthropod families allowed us to implement the reference MS spectra database (DB) with protein profiles of seven lice species stored in alcohol. Blind tests revealed a correct identification of 93.9% of Pediculus humanus corporis (Linnaeus, 1758) and 98.4% of the other lice species collected in the field. This study demonstrated that MALDI-TOF MS could be successfully used for the identification of lice stored in alcohol for different lengths of time.


2017 ◽  
Vol 115 ◽  
pp. 10-12 ◽  
Author(s):  
J.-P. Wickhorst ◽  
O. Sammra ◽  
A.A. Hassan ◽  
M. Alssashen ◽  
C. Lämmler ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document