scholarly journals Compression Behavior and Vibrational Properties of New Energetic Material LLM-105 Analyzed Using the Dispersion-Corrected Density Functional Theory

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6831
Author(s):  
Tianming Li ◽  
Junyu Fan ◽  
Zhuoran Wang ◽  
Hanhan Qi ◽  
Yan Su ◽  
...  

The 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) is a newly energetic material with an excellent performance and low sensitivity and has attracted considerable attention. On the basis of the dispersion-corrected density functional theory (DFT-D), the high-pressure responses of vibrational properties, in conjunction with structural properties, are used to understand its intermolecular interactions and anisotropic properties under hydrostatic and uniaxial compressions. At ambient and pressure conditions, the DFT-D scheme could reasonably describe the structural parameters of LLM-105. The hydrogen bond network, resembling a parallelogram shape, links two adjacent molecules and contributes to the structure stability under hydrostatic compression. The anisotropy of LLM-105 is pronounced, especially for Raman spectra under uniaxial compression. Specifically, the red-shifts of modes are obtained for [100] and [010] compressions, which are caused by the pressure-induced enhance of the strength of the hydrogen bonds. Importantly, coupling modes and discontinuous Raman shifts are observed along [010] and [001] compressions, which are related to the intramolecular vibrational redistribution and possible structural transformations under uniaxial compressions. Overall, the detailed knowledge of the high-pressure responses of LLM-105 is established from the atomistic level. Uniaxial compression responses provide useful insights for realistic shock conditions.

2015 ◽  
Vol 17 (14) ◽  
pp. 9454-9464 ◽  
Author(s):  
V. Monteseguro ◽  
P. Rodríguez-Hernández ◽  
H. M. Ortiz ◽  
V. Venkatramu ◽  
F. J. Manjón ◽  
...  

An ab initio study of the structural, elastic and vibrational properties of the lutetium gallium garnet (Lu3Ga5O12) under pressure has been performed in the framework of the density functional theory, up to 95 GPa.


RSC Advances ◽  
2020 ◽  
Vol 10 (42) ◽  
pp. 24867-24876
Author(s):  
B. Moses Abraham

We report the high pressure structural and vibrational properties of 5,5′-bitetrazole-1,1′-diolate based energetic ionic salts via dispersion-corrected density functional theory calculations.


2003 ◽  
Vol 57 (8) ◽  
pp. 970-976 ◽  
Author(s):  
M. Bolboaca ◽  
T. Stey ◽  
A. Murso ◽  
D. Stalke ◽  
W. Kiefer

Fourier transform (FT) Raman and infrared spectroscopy in combination with density functional theory calculations have been applied to the vibrational characterization of the dimeric zinc diphenylphosphanyl(trimethylsilyl)amide complex [(Me3Si)2NZnPh2PNSiMe3]2 and the ortho-metallated species [Li( o-C6H4PPh2NSiMe3)]2·Et2O in relation to their parent starting materials diphenylphosphanyl (trimethylsilyl)amine Ph2P–N(H)SiMe3 and iminophosphorane Ph3P=NSiMe3. The spectroscopic changes evidenced in the spectra were correlated with the structural parameters in order to provide insight as to what extent the P–N bond is affected by the coordination to the metal center. The employment of density functional theory (DFT) calculations in addition to these spectroscopic methods offers the possibility of predicting whether the Lewis-basic imido nitrogen atom is involved in coordination not only in the solid state, but also in the gas phase.


Sign in / Sign up

Export Citation Format

Share Document