scholarly journals Reductive Hydroformylation of Isosorbide Diallyl Ether

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7322
Author(s):  
Jérémy Ternel ◽  
Adrien Lopes ◽  
Mathieu Sauthier ◽  
Clothilde Buffe ◽  
Vincent Wiatz ◽  
...  

Isosorbide and its functionalized derivatives have numerous applications as bio-sourced building blocks. In this context, the synthesis of diols from isosorbide diallyl ether by hydrohydroxymethylation reaction is of extreme interest. This hydrohydroxymethylation, which consists of carbon-carbon double bonds converting into primary alcohol functions, can be obtained by a hydroformylation reaction followed by a hydrogenation reaction. In this study, reductive hydroformylation was achieved using isosorbide diallyl ether as a substrate in a rhodium/amine catalytic system. The highest yield in bis-primary alcohols obtained was equal to 79%.

2011 ◽  
Vol 7 ◽  
pp. 1198-1204 ◽  
Author(s):  
Michel Chiarucci ◽  
Mirko Locritani ◽  
Gianpiero Cera ◽  
Marco Bandini

Gold(I)-N-heterocyclic carbene (NHC) complexes proved to be a reliable catalytic system for the direct synthesis of functionalized γ-vinylbutyrolactones by intramolecular oxaallylic alkylation with primary alcohols. Good isolated chemical yields were obtained for a range of malonyl and acetate derivatives. The good performance in reagent-grade solvents and the functional group/moisture tolerance make this catalytic process a promising route for the synthesis of architecturally complex polycyclic structures.


Catalysts ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 8
Author(s):  
Hui-Ju Chen ◽  
Chien-Cheng Chiu ◽  
Tsui Wang ◽  
Dong-Sheng Lee ◽  
Ta-Jung Lu

The bis-NHC–Ag/Pd(OAc)2 catalytic system (NHC = N-heterocyclic carbene), a combination of bis-NHC–Ag complex and Pd(OAc)2, was found to be a smart catalyst in the Pd-catalyzed transfer hydrogenation of various functionalized arenes and internal/terminal alkynes. The catalytic system demonstrated high efficiency for the reduction of a wide range of various functional groups such as carbonyls, alkynes, olefins, and nitro groups in good to excellent yields and high chemoselectivity for the reduction of functional groups. In addition, the protocol was successfully exploited to stereoselectivity for the transformation of alkynes to alkenes in aqueous media under air. This methodology successfully provided an alternative useful protocol for reducing various functional groups and a simple operational protocol for transfer hydrogenation.


Synthesis ◽  
2020 ◽  
Author(s):  
Travis J. Williams ◽  
Valeriy Cherepakhin

AbstractOxidation of primary alcohols to carboxylic acids is a fundamental transformation in organic chemistry, yet despite its simplicity, extensive use, and relationship to pH, it remains a subject of active research for synthetic organic chemists. Since 2013, a great number of new methods have emerged that utilize transition-metal compounds as catalysts for acceptorless dehydrogenation of alcohols to carboxylates. The interest in this reaction is explained by its atom economy, which is in accord with the principles of sustainability and green chemistry. Therefore, the methods for the direct synthesis of carboxylic acids from alcohols is ripe for a modern survey, which we provide in this review.1 Introduction2 Thermodynamics of Primary Alcohol Oxidation3 Oxometalate Oxidation4 Transfer Dehydrogenation5 Acceptorless Dehydrogenation6 Electrochemical Methods7 Outlook


2020 ◽  
Vol 74 (11) ◽  
pp. 857-865
Author(s):  
Sumi Joseph ◽  
Gaukhar Khassenova ◽  
Olga García Mancheño

The use of (benzo)pyrylium salts as versatile synthetic building blocks has become an attractive platform for the preparation of valuable heterocyclic compounds. Besides other numerous direct applications of (benzo)pyryliums, the intrinsic electrophilic nature of these species or the dipole character of the related oxidopyrylium derivatives have been exploited towards the development of enantioselective transformations such as nucleophilic dearomatization and cycloaddition reactions. This review aims at providing an overview on the relevant catalytic enantioselective methodologies developed in the past years, which are presented considering the involved metal- and/or organic catalytic system, as well as the type of reaction.


2011 ◽  
Vol 89 (10) ◽  
pp. 1207-1221 ◽  
Author(s):  
Flavia Popa ◽  
Pedro Lameiras ◽  
Eric Henon ◽  
Oana Moldovan ◽  
Agathe Martinez ◽  
...  

Starting from 4-piperidone monohydrate hydrochloride (or the hydrochloride of its ethylene ketal) alone, otherwise in tandem with a C-2-substituted 2-aminopropane-1,3-diol (“serinol”) as amino-nucleophiles in reaction with cyanuric chloride, the synthesis of novel N-substituted amino-s-triazines is reported. The stereochemistry of rotational phenomena occurring about the newly created C(s-triazine)–N< (exocyclic) partial double bonds in the title compounds, seen as new dendritic building blocks, is discussed.


SynOpen ◽  
2019 ◽  
Vol 03 (01) ◽  
pp. 1-3 ◽  
Author(s):  
Reuben James ◽  
Sharon Herlugson ◽  
Sami Varjosaari ◽  
Vladislav Skrypai ◽  
Zainab Shakeel ◽  
...  

A one-pot, direct reductive acetylation of aldehydes was achieved under mild conditions using 1-hydrosilatrane as a safe and easily accessible catalyst. Described herein is a facile synthesis that produces acylated primary alcohols that can serve as valuable building blocks for organic synthesis. The method has good functional group tolerance and works for a range of aryl aldehydes, with the notable exception of electron-rich arenes. A library of esters was isolated by flash chromatography in yields as high as 92%.


2019 ◽  
Vol 5 (12) ◽  
pp. eaay1537 ◽  
Author(s):  
Cuibo Liu ◽  
Zhongxin Chen ◽  
Huan Yan ◽  
Shibo Xi ◽  
Kah Meng Yam ◽  
...  

Unprotected E-hydrazone esters are prized building blocks for the preparation of 1H-indazoles and countless other N-containing biologically active molecules. Despite previous advances, efficient and stereoselective synthesis of these compounds remains nontrivial. Here, we show that Pt single atoms anchored on defect-rich CeO2 nanorods (Pt1/CeO2), in conjunction with the alcoholysis of ammonia borane, promotes exceptionally E-selective hydrogenation of α-diazoesters to afford a wide assortment of N-H hydrazone esters with an overall turnover frequency of up to 566 hours−1 upon reaction completion. The α-diazoester substrates could be generated in situ from readily available carboxylic esters in one-pot hydrogenation reaction. Utility is demonstrated through concise, scalable synthesis of 1H-indazole–derived pharmaceuticals and their 15N-labeled analogs. The present protocol highlights a key mechanistic nuance wherein simultaneous coordination of a Pt site with the diazo N═N and ester carbonyl motifs plays a central role in controlling stereoselectivity, which is supported by density functional theory calculations.


Sign in / Sign up

Export Citation Format

Share Document