scholarly journals A Novel L-Shaped Fluorescent Probe for AIE Sensing of Zinc (II) Ion by a DR/NIR Response

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7347
Author(s):  
Rosita Diana ◽  
Ugo Caruso ◽  
Francesco Silvio Gentile ◽  
Luigi Di Costanzo ◽  
Barbara Panunzi

In the field of optical sensors, small molecules responsive to metal cations are of current interest. Probes displaying aggregation-induced emission (AIE) can solve the problems due to the aggregation-caused quenching (ACQ) molecules, scarcely emissive as aggregates in aqueous media and in tissues. The addition of a metal cation to an AIE ligand dissolved in solution can cause a “turn-on” of the fluorescence emission. Half-cruciform-shaped molecules can be a winning strategy to build specific AIE probes. Herein, we report the synthesis and characterization of a novel L-shaped fluorophore containing a benzofuran core condensed with 3-hydroxy-2-naphthaldehyde crossed with a nitrobenzene moiety. The novel AIE probe produces a fast colorimetric and fluorescence response toward zinc (II) in both in neutral and basic conditions. Acting as a tridentate ligand, it produces a complex with enhanced and red-shifted emission in the DR/NIR spectral range. The AIE nature of both compounds was examined on the basis of X-ray crystallography and DFT analysis.

1987 ◽  
Vol 42 (5) ◽  
pp. 589-598 ◽  
Author(s):  
Rainer Mattes ◽  
Heinz Scholand ◽  
Ulrich Mikloweit ◽  
Volker Schrenk

(2).The reaction of alkyldithiocarbazates NH2NHC(S)SR′ with MoO2(S2CNR2)2 R, R′ = Me, Et) yields the diazenido hydrazido complexes Mo(NNC(S)SR′)(NH2NC(S)SR′)(S2CNR2)2 (1), reaction with the molybdenum hydroxylamidate complex MoO2(ONMe2)2 gives the diazenidobis( hydrazido) complex Mo(NNC(S)SMe)(NH2NC(S)SMe)2(Me2NO)-CH3OH The crystal structures of 1 a (R = Me, R′ = Et) and 2 have been determined. The metal atoms in 1 a and 2 are seven coordinated and have MoN2S5 and MoN3O2S2 ligand arrays, respectively. Both compounds contain the approximately linear diazenido ligand NNC(S)SR in addition to one (1a) or two (2) N,S-chelating hydrazido(1-) ligands NH2NC(S)SR. When 1a is treated with HCl, the dimeric complex (Me2NCS2)(O)Mo(μ-NNC(S)SEt)2 Mo(S2CNMe2) (4) is obtained. X-ray crystallography showed 4 to be an asymmetric dinuclear complex, with a Mo-Mo distance of 267.2(1) pm. One Mo site has a square pyramidal MoOS2N2 geometry, while the other one has an approximately trigonal prismatic MoN2S4 geometry. The mean N-N distance in 4 is 135(1) pm. The reaction of NH2NHC(S)SMe with MoO2(acac)2 yields Mo(Me2CNNC(S)SMe)(NNC(S)SMe)(MeSC(S)NNC(S)SMe) (3). Its structure has been determined by X-ray crystallography. 3 contains a unique combination of three different N- and S-chelating ligands: the Schiff base Me2C=NNC(S)SMe, the highly bent bidentate diazenido ligand NNC(S)SMe (∡ Mo-N-N = 142.1(5)°), and the novel planar tridentate ligand MeSC(S)NNC(S)SMe. The latter can be taken as neutral diacyldiazene or, more likely, as the dianion of the as yet unknown MeSC(S)NH -NHC(S)SMe. The N - N distance in this ligand is 136.1(9) pm.


2018 ◽  
Vol 9 (4) ◽  
pp. 281-286
Author(s):  
Amadou Gueye ◽  
Farba Bouyagui Tamboura ◽  
Jean-Marc Planeix ◽  
Nathalie Gruber ◽  
Mohamed Gaye

The reactions of the Schiff base 2-((2-hydroxyphenylimino)methyl)-6-methoxyphenol (H2L), obtained by direct condensation of 2-aminophenol and 2-hydroxy-3-methoxybenzaldehyde, with some transition  metal ions (Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)) afforded complexes of general formulae [M2(L)2(solvent)x] (M: Mn, Co, Ni, Cu or Zn; Solvent: DMSO or H2O). These compounds were characterized by elemental analysis, UV-Vis, IR, 1H- and 13C-NMR spectroscopies, molar conductivity and room temperature magnetic measurements. The structure of zinc(II) complex has been determined by X-ray crystallography. Crystal data for C32H34N2O8S2Zn2 (M =769.47 g/mol): Orthorhombic, space group Pbca (no. 61), a = 16.3176(7) Å, b = 9.1247(3) Å, c = 21.8274(10) Å, V = 3250.0(2) Å3, Z = 4, T = 173(2) K, μ(MoKα) = 1.658 mm-1, Dcalc = 1.573 g/cm3, 28116 reflections measured (4.5° ≤ 2Θ ≤ 60.3°), 4457 unique (Rint = 0.0409, Rsigma = 0.0371) which were used in all calculations. The final R1 was 0.0307(0.0466) and wR2 was 0.0649 (0.0701) (all data). The coordination sphere of the Zn center is best described as a trigonal bipyramid.


Author(s):  
Shabana Noor ◽  
Richard Goddard ◽  
Fehmeeda Khatoon ◽  
Sarvendra Kumar ◽  
Rüdiger W. Seidel

AbstractSynthesis and structural characterization of two heterodinuclear ZnII-LnIII complexes with the formula [ZnLn(HL)(µ-OAc)(NO3)2(H2O)x(MeOH)1-x]NO3 · n H2O · n MeOH [Ln = Pr (1), Nd (2)] and the crystal and molecular structure of [ZnNd(HL)(µ-OAc)(NO3)2(H2O)] [ZnNd(HL)(OAc)(NO3)2(H2O)](NO3)2 · n H2O · n MeOH (3) are reported. The asymmetrical compartmental ligand (E)-2-(1-(2-((2-hydroxy-3-methoxybenzylidene)amino)-ethyl)imidazolidin-2-yl)-6-methoxyphenol (H2L) is formed from N1,N3-bis(3-methoxysalicylidene)diethylenetriamine (H2valdien) through intramolecular aminal formation, resulting in a peripheral imidazoline ring. The structures of 1–3 were revealed by X-ray crystallography. The smaller ZnII ion occupies the inner N2O2 compartment of the ligand, whereas the larger and more oxophilic LnIII ions are found in the outer O2O2’ site. Graphic Abstract Synthesis and structural characterization of two heterodinuclear ZnII-LnIII complexes (Ln = Pr, Nd) bearing an asymmetrical compartmental ligand formed in situ from N1,N3-bis(3-methoxysalicylidene)diethylenetriamine (H2valdien) through intramolecular aminal formation are reported.


2012 ◽  
Vol 13 (8) ◽  
pp. 10537-10552 ◽  
Author(s):  
Vincent J. B. Ruigrok ◽  
Mark Levisson ◽  
Johan Hekelaar ◽  
Hauke Smidt ◽  
Bauke W. Dijkstra ◽  
...  

2010 ◽  
Vol 63 (19) ◽  
pp. 3335-3347 ◽  
Author(s):  
Sanjit Konar ◽  
Kevin Gagnon ◽  
Abraham Clearfield ◽  
Charles Thompson ◽  
Jennifer Hartle ◽  
...  

2012 ◽  
Vol 16 (01) ◽  
pp. 154-162 ◽  
Author(s):  
Edwin W.Y. Wong ◽  
Daniel B. Leznoff

The reduction of magnesium phthalocyanine (MgPc) with 2.2 equivalents of potassium graphite in 1,2-dimethoxyethane (DME) gives [K2(DME)4]PcMg(OH)(1) in 67% yield. Compound 1 was structurally characterized using single crystal X-ray crystallography and was found to be a monomeric, heterometallic complex consisting of a μ3-OH ligand that bridges a [MgIIPc3-]- anion to two potassium cations solvated by four DME molecules. An absorption spectrum of 1 confirms the Pc ligand is singly reduced and has a 3–charge. The solid-state structure of 1 does not indicate breaking of the aromaticity of the Pc ligand. Compound 1 is only the second Pc3- complex and the first reduced MgPc to be isolated and structurally characterized.


1981 ◽  
Vol 219 (2) ◽  
pp. C23-C25 ◽  
Author(s):  
Gianfranco Ciani ◽  
Giuseppe D'Alfonso ◽  
Maria Freni ◽  
Pierfrancesco Romiti ◽  
Angelo Sironi
Keyword(s):  

1995 ◽  
Vol 73 (7) ◽  
pp. 1126-1134 ◽  
Author(s):  
Michel Dionne ◽  
Shoukang Hao ◽  
Sandro Gambarotta

The synthesis and characterization of a new series of mono-, di-, and trinuclear Cr(II) borohydride compounds is described. The reaction of CrCl2(TMEDA) with two equivalents of NaBH4 afforded the thermally unstable (TMEDA)Cr(BH4)2 (1), which was converted by treatment with pyridine into the octahedral monomeric (Py)4Cr(BH4)2 (2). The reaction proceeds via formation of an intermediate trinuclear complex {[(TMEDA)(Py)Cr(η2-BH4)]2[(Py)2Cr(η2-BH4)2]}(µ,η1-BH4)2 (3), which was isolated and characterized by X-ray crystallography. Reaction of 1 and 2 with both CO2 and RN=C=NR (R = Cy, iPr) afforded hydride insertion and formation of the corresponding diamagnetic lantern-type Cr(II) formate (HCO2)4Cr2Py2 (4) and formamidinate compounds [RNC(H)NR]2Cr2(µ-BH)4 (R = Cy (5a), iPr (5b)), respectively, with supershort Cr—Cr quadruple bonds. The structures of 1, 2, 3, and 5b were elucidated by X-ray analysis. Crystal data are as follows. 1: C6H24N2B2Cr, monoclinic, Cc, a = 8.517(2) Å, b = 15.921(5) Å, c = 9.624(2) Å, β = 115.59(1)°, Z = 4, R = 0.022, Rw = 0.029; 2: C28H44N4B2O2Cr, monoclinic, P21/n, a = 12.021(1) Å, b = 15.555(1) Å, c = 15.723(1) Å, β = 90.13(2)°, Z = 4, R = 0.074, Rw = 0.086; 3: C32H76N8B6Cr3, monoclinic, P21/n, a = 8.515(1) Å, b = 14.525(1) Å, c = 18.286(2) Å, β = 91.38(1)°, Z = 2, R = 0.051, Rw = 0.060; 5b: C21H49N6BCr2, monoclinic, C2/c, a = 17.000(1) Å, b = 9.033(1) Å, c = 19.160(1) Å, β = 105.579(9)°, Z = 4, R = 0.069, Rw = 0.078. Keywords: divalent chromium, borohydride, Cr—Cr quadruple bond.


2002 ◽  
Vol 80 (11) ◽  
pp. 1524-1529 ◽  
Author(s):  
Tianle Zhang ◽  
Warren E Piers ◽  
Masood Parvez

Reaction of McConville's chelating amido titanium complex [(Ar)NCH2CH2CH2N(Ar)]Ti(CH3)2 (Ar = 2,6-i-Pr2C6H3) with either elemental Se or the tellurium atom source Te=PBu3 resulted in the formation of bis-µ-chalcogenido dimers [(Ar)NCH2CH2CH2N(Ar)]2Ti(µ-E)2 (E = Se, 2; Te, 3) with concommitant loss of EMe2. The dimers 2 and 3 were characterized spectroscopically and via X-ray crystallography. The two compounds are isostructural in the solid state. The tellurido dimer 3 may also be synthesized by reduction of the diamido dichloride [(Ar)NCH2CH2CH2N(Ar)]2TiCl2 with Na–Hg amalgam followed by treatment with Te=PBu3. This dimer is unreactive toward further Te=PBu3 or stannanes such as HSnBu3. Unlike decamethyltitanocene derivatives, the diamido complex is not an effective catalyst precursor for the heterohydrodecoupling of Te=PBu3 and HSnBu3.Key words: diamido titanium complexes, selenides, tellurides.


Sign in / Sign up

Export Citation Format

Share Document